
Towards a Theory of
Application Compartmentalisation

Robert N. M. Watson1, Steven J. Murdoch1, Khilan Gudka1,
Jonathan Anderson1, Peter G. Neumann2, and Ben Laurie3

1 University of Cambridge
2 SRI International
3 Google UK Ltd.

Abstract. Application compartmentalisation decomposes software ap-
plications into sandboxed components, each delegated only the rights
it requires to operate. Compartmentalisation is seeing increased deploy-
ment in vulnerability mitigation, motivated informally by appeal to the
principle of least privilege. Drawing a comparison with capability sys-
tems, we consider how a distributed system interpretation supports an
argument that compartmentalisation improves application security.

1 Introduction

Application compartmentalisation decomposes applications into sandboxed com-
ponents, each assigned only the rights it requires to operate. Motivated by the
principle of least privilege, the focus of historic work on compartmentalisation
has been primarily in access-control policy enforcement [25]. More recently, com-
partmentalisation has been employed in vulnerability mitigation: exploited vul-
nerabilities leak only the subset of overall application rights that are held by the
compromised sandbox. For example, web browsers might be compartmentalised
such that each web page visited is rendered in its own sandbox [22]. Successful
exploitation of a JavaScript rendering bug might lead only to very limited leak-
age of system-centered rights (e.g., local files) and application-centered rights
(e.g., username/password tuples for other web sites).

To date, application compartmentalisation has been intuitively grounded in
the principle of least privilege, but without a theoretical foundation that permits
the use of formal or automated reasoning. In this paper, we consider experience
gained in developing and deploying compartmentalised applications, and its im-
plications for new theoretical foundations. Our approach considers applications
to be distributed systems, and is, therefore, a fundamentally protocol-centered
approach. This viewpoint grants us access to a large existing literature on net-
work and distributed system analysis: we reason about the gains attackers make
in communicating with, and compromising, elements of the system as a network
of components. One important outcome of this work will be a new approach to
application security measurement.



2 Protection Model

Application compartmentalisation is premised on strong isolation between in-
dividual compartments: no communication is permitted except via controlled
communication channels. This is a view long-espoused in security system design,
ranging from microkernel- and security-kernel systems to programming-language
virtual machines. Isolation deployed within applications typically follows a sand-
boxing model: code is encapsulated in a process or other execution container, and
granted only specific rights delegated or forwarded from the containing system.
We have previously observed an elegant alignment between the intersection of
sandboxing features across operating system platforms and the capability system
model [7, 26].

Capability system models can be mapped into classic OS primitives (pro-
cesses and IPC) if access to ambient authority is limited. This approach falls
naturally out of classic capability hardware and OS designs such as the CAP
computer [27] and seL4 [12], but also in hybrid capability systems such as Cap-
sicum that allow selected processes to operate in a non-ambient “capability
mode” [26]. Capability system models can also be layered over other substrates,
such as distributed systems or programming languages. Examples of the latter
include Joe-E [17] and Caja [18].

All of these systems are able to represent non-hierarchical protection mod-
els: mutually distrusting program instances with disjoint sets of rights may
safely interact. However, the efficiency of cross-domain calls involving mutual
distrust varies significantly – programming languages such as Java provide this
very efficiently through a blend of static and dynamic enforcement, whereas
hardware-supported process models rely on slower message passing via a mutu-
ally trusted kernel. This variation introduces a necessary set of tradeoffs between
performance and security – i.e., more granular compartmentalisations that bet-
ter approximate the principle of least privilege may incur greater cost on some
substrates.

In general, we believe that sandboxing schemes approximate capability sys-
tems, but with a not-uncommon problem that support for flexible delegation and
fine-grained application-level access control may be limited by some substrates
(e.g., SELinux with its static rule configuration [16]). It is unclear to us whether
this rigidity improves performance; in our experience, however, it observably
increases fragility in the presence of ongoing software development.

3 Applications as Distributed Systems

In Capsicum, the kernel and a small amount of userspace communications code
act as the run-time Trusted Computing Base (TCB) [2]. Sets of sandboxes and
their interconnections are able to represent different communication and trust
relationships, including both purely hierarchical relationships (e.g., the HTTPS
download component depends fully on the ambient component of fetch), non-
hierarchical isolation (e.g., different renderer processes in a web browser), and



Compartmentalised "fetch" program

Conventional "fetch" program

Kernel

main 
loop

vulnerable
HTTPS fetch 

logic

Kernel

Conventional 
UNIX process

Capability-mode process

main 
loop

vulnerable
HTTPS fetch 

logic Selected rights 
delegated to 
sandbox via 
capabilitiesAmbient 

authority 
held by 

UNIX 
process

Fig. 1. Whereas conventional HTTPS fetch executes within a single process holding
ambient user privilege, Capsicum’s fetch executes TLS in a sandbox holding only
delegated rights. This is a code-oriented compartmentalisation: selected risky code
runs in a per-application instance sandbox.

non-hierarchical mutual distrust with communication (e.g., two components rep-
resenting different stages in a firewall processing pipeline). This approach sug-
gests a graph-oriented analysis of program structure, in which nodes execute
components with state (processes), and edges are IPC channels (perhaps sock-
ets).

However, this graph captures only communications, and not trust (or perhaps
more accurately, dependence), which may track communication edges (especially
in a purely information-flow-centric analysis), but also span multiple edges via
intermediate nodes. For example, microkernel systems often employ the notion
of a service namespace manager, such as in Mach [1]; isolated components will
necessarily trust the namespace manager in some form, but via the namespace
manager they may indirectly trust the actions of other parties that are reachable
via the shared namespace. As such, trust is more complex than simple annota-
tions on communications edges in the graph.

This is fundamentally a distributed system view of application structure, al-
lowing us to borrow an extensive literature on protocols, consensus, fault toler-
ance, and distrust, including Lamport’s Byzantine Generals [13], and more recent
work on understanding and managing compromise in distributed systems [23],
software composition [19], and layering of compartmentalised software over mi-
crokernels and separation kernels [3].

4 Compartmentalisation Philosophies

Figure 1 illustrates the transformation of a conventional application, fetch, into
a compartmentalised one via Capsicum. The kernel provides a capability system
substrate; a portion of fetch operates with ambient authority, outside of the
capability system, and a sandboxed HTTPS download component executes with
only delegated rights. In this example, two types of rights have been delegated



HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation

D
at

a-
ce

nt
er

ed
 c

om
pa

rtm
en

ta
lis

at
io

n
1. fetch

main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

Object-oriented
compartmentalisation

Fig. 2. fetch and libfetch can be compartmentalised along many different cut points,
with different security, performance, and complexity tradeoffs.

via kernel capabilities: a set of explicitly delegated files and sockets, and an IPC
channel used to communicate with the parent.

Even a program as simple as fetch serves as a useful proving ground for
exploring ideas about compartmentalisation – not least, by bringing to light the
observation that a single program may have many different possible decomposi-
tions, with different security properties. The illustrated compartmentalisation is
fundamentally code-oriented, in that two pieces of code, a main loop and a set
of network functions, are separated from one another. Selection of a decompo-
sition is often grounded in our understanding of past vulnerabilities: OpenSSL
code has suffered a number of past vulnerabilities, both stemming from incorrect
implementation and incorrect use. Frequently, these vulnerabilities have been re-
motely exploitable, leading to remote code execution, which can be mitigated
by sandboxing.

However, further decomposition along data-oriented lines can also be justi-
fied: fetch can accept multiple URLs on the command line, and if an exploit
originates from one web server communicated with, exploit code may have ac-
cess to later files downloaded in the same code-oriented sandbox. We might,
therefore, choose to further introduce sandboxes one per web site, pursuing the
principle of least privilege. We might reasonably take the view that this is an
object-oriented partitioning, instantiating an object to process each URL, based
on a common class, even though the C programming language itself does not
capture those higher-level programming properties. It is for this reason that
we suggest that fine-grained compartmentalised applications adopt the object-
capability paradigm; Figure 2 illustrates additional points on the code-based spec-
trum, including finer-grained compartmentalisations even within the processing
of a single HTTPS connection.



We make several further observations about the nature of compartmental-
isation. Finer-grained decompositions require tradeoffs between security goals,
program complexity, and performance, as security-beneficial decomposition re-
quires both programmer attention and incurs a run-time overhead. In designing
decompositions, we are responding to informal notions of risk – properties of
the code itself: past vulnerabilities, source code provenance (e.g., open-source
supply-chain trojans), and risky code structures (e.g., video CODECs). How-
ever, we are also taking into account where data originated (a file or web site),
its sensitivity (e.g., keying material), and how it will be processed. Notions of
data provenance (informally, taint) and the nature of rights that could be leaked
will all be inputs to this reasoning.

These are all aspects of compartmentalisation design that we would like to
capture in a structured model.

5 A Graph-Oriented Analysis

Traditional graph representations of networks (whether of connected hosts, col-
lections of applications on a host, or subsystems within an application) repre-
sent components as nodes and edges indicate permitted communication paths
between components. This representation lends itself to compartmentalisation
through blocking communication paths which are not necessary, using firewalls,
mandatory access control, or capabilities as appropriate. Eliminating an edge in
this model by blocking a communication path will improve security, but not all
edges are created equal. Typically, there is some concept of the source of mali-
cious activity (e.g. the Internet), and following connectivity from here to other
nodes will show which nodes are at particular risk.

However, merely being connected to a potentially malicious node does not
necessarily imply that the network design is vulnerable. While some communi-
cation paths are highly dangerous (e.g. exposing an industrial control system
designed without security in mind, to the Internet), others may be far less prob-
lematic (e.g. connecting a hardened web server to the Internet). Including in-
formation about how vulnerable a particular node is can help, as it indicates
the likelihood that a node may be compromised if it encounters malicious input.
However, even this extension is not sufficient – for example while connecting the
web server to the Internet may be fine, connecting its file system to a malicious
file server is likely not.

The traditional model can capture connectivity, but not trust, and so has
significant limitations when it comes to measuring the network. Instead each
node can be modelled as a series of ports, and connectivity is from a port on
one node to a port on another, forming a matrix of probabilities. Rather than a
single vulnerability probability for a node, there is a probability assigned to each
pair of nodes stating the probability that a malicious output will result from a
malicious input. In the example of a web server, a malicious input on the socket
input of the web server is unlikely to lead to malicious output and thus will be



assigned a low probability, whereas a malicious input in the file system input of
the same program will likely result in malicious output on all ports.

This approach captures both trust between nodes and vulnerability of appli-
cations, but a high probability does not necessarily mean that an individual node
is somehow flawed. A router may forward malicious traffic (unless the router has
a suitably configured firewall) even though it is operating as intended. To eval-
uate whether a network is secure it is necessary to establish the consequences of
connectivity between malicious nodes and critical resources to be protected.

Defences can also be modelled, in this approach. For example compartmental-
ising an application may not affect the probability that it will be compromised,
and so will not be captured by assigning a single probability of compromise figure
to the node. However, the matrix approach is more suitable – compartmental-
isation results in the probability for malicious output will be lowered in cases
where the input and output ports are in different compartments.

While powerful, the challenge of using the model is in its complexity. Extract-
ing data to fill in the vulnerability matrix is challenging. Also the computational
complexity of reasoning about the network is high, due to the number of network
states growing exponentially with the number of states of each node. Therefore
new techniques in data collection and simulation will need to be adopted for this
model to be fruitful.

6 Related Work

Application compartmentalisation is a recasting of the microkernel hypothesis
into the application space – in fact, contemporary monolithic applications are of
a similar scale (millions of lines of code) to the monolithic kernels that motivated
microkernel research. Past security-kernel research is concerned with providing
a reliable TCB for decomposed components [15], and more recent microkernel
research has likewise been interested in the verifiability of security properties
when combining untrustworthy components over a formally verified separation
kernel [3].

Karger originally proposed the use of capability systems to contain tro-
jans [10], an approach later adopted by Provos in SSH privilege separation [21]
and Kilpatrick in Privman [11]. While these application decompositions were
concerned with UNIX root privilege, contemporary application compartmentali-
sation is more interested in limiting rights to ambient (unprivileged) user rights,
as utilised by Reis et al in Chromium [22] and by the authors in Capsicum [26].
This is a response to the observation that, on a single-user machine, access to
the single user’s account is, in practice, almost as important as access to root
privilege.

We are interested in capturing a variety of trust relationships in application
compartmentalisation – not least, hierarchical trust models explored in Mul-
tics [24], non-hierarchical models, such as assured pipelines, from Type Enforce-
ment [5], and the flexible programmer-driven models supported by capability sys-



tems that differentiate policy and enforcement, such as in CAP [27], PSOS [20],
and Hydra [14].

Research into automation of application decomposition is also directly rele-
vant, although not always well-supported by current theory. Brumley and Song
developed Privtrans [6]; Bittau et al, Wedge [4], and most recently, Harris et
al have used parity games to drive automata-based application of policies to
compartmentalised software [9] – a policy- rather than least-privilege–oriented
approach. Our own SOAAP toolchain attempts to take into account many fac-
tors in selecting (and trading off) application decompositions in a dialogue with
the developer, which has motivated our search for formal grounding [8].

7 Conclusion

Our ongoing work with application compartmentalisation has driven us to be-
gin development of theory helping us to justify and quantify program decom-
positions. Throughout, the principle of least privilege (together with desires for
good software engineering practices such as abstraction, encapsulation, and facile
composability) guides our approach, with a focus on providing vulnerability mit-
igation. In a broad sense, compartmentalisation represents the adoption of fur-
ther distributed system programming paradigms in local systems: interconnected
components are isolated in sandboxes used to construct larger user-facing appli-
cations, and subject to a variety of faults (malicious and otherwise). This has
led us to a graph-oriented analysis that will provide the foundation for mod-
elling application security through quantifiable comparisons of risk and rights
exposure. This in turn will lead to the development of automated tools to help
develop and reason about compartmentalisation strategies.

8 Acknowledgments

We would like to thank our colleagues on the Capsicum, CTSRD, and SOAAP
projects for their thoughts and comments contribution to this paper, including
Ross Anderson, David Chisnall, Brooks Davis, Pawel Dawidek, Steven Hand,
Anil Madhavapeddy, Ilias Marinos, Will Morland, Michael Roe, and Hassen
Saidi.

We gratefully acknowledge Google, Inc. for its sponsorship. Portions of this
work were sponsored by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-
0237. The views, opinions, and/or findings contained in this report are those of
the authors and should not be interpreted as representing the official views or
policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the Department of Defense.



References

1. Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., and Young,
M. Mach: A New Kernel Foundation for UNIX Development. Tech. rep., Computer
Science Department, Carnegie Mellon University, August 1986.

2. Anderson, J. P. Computer Security Technology Planning Study. Tech. rep., Elec-
tronic Systems Division, Air Force Systems Command, Hanscom Field, Bedford,
MA 01730, October 1972.

3. Andronick, J., Greenaway, D., and Elphinstone, K. Towards proving se-
curity in the presence of large untrusted components. In Proceedings of the 5th
Workshop on Systems Software Verification (October 2010).

4. Bittau, A., Marchenko, P., Handley, M., and Karp, B. Wedge: Splitting
Applications into Reduced-Privilege Compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation (2008),
USENIX Association, pp. 309–322.

5. Boebert, W. E., and Kain, R. Y. A practical alternative to hierarchical in-
tegrity policies. In In Proceedings of the 8th National Computer Security Confer-
ence (1985).

6. Brumley, D., and Song, D. Privtrans: automatically partitioning programs for
privilege separation. In Proceedings of the 13th conference on USENIX Security
Symposium - Volume 13 (Berkeley, CA, USA, 2004), SSYM’04, USENIX Associ-
ation, pp. 5–5.

7. Dennis, J. B., and Van Horn, E. C. Programming semantics for multipro-
grammed computations. Commun. ACM 9, 3 (1966), 143–155.

8. Gudka, K., Watson, R. N. M., Hand, S., Laurie, B., and Madhavapeddy,
A. Exploring compartmentalisation hypotheses with SOAAP. In Proceedings of
the Workshop on Adaptive Host and Network Security (AHANS 2012) (September
2012), IEEE.

9. Harris, W. R., Farley, B., Jha, S., and Reps, T. Secure Programming as a
Parity Game. Tech. Rep. 1694, University of Wisconsin Madison, July 2011.

10. Karger, P. A. Limiting the damage potential of discretionary trojan horses. In
IEEE Symposium on Security and Privacy (1987), pp. 32–37.

11. Kilpatrick, D. Privman: A Library for Partitioning Applications. In Proceedings
of USENIX Annual Technical Conference (2003), USENIX Association, pp. 273–
284.

12. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin,
P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell,
T., Tuch, H., and Winwood, S. seL4: formal verification of an operating-system
kernel. Commun. ACM 53 (June 2009), 107–115.

13. Lamport, L., Shostak, R., and Pease, M. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems 4, 3 (July 1982), 382–
401.

14. Levin, R., Cohen, E., Corwin, W., Pollack, F., and Wulf, W. Pol-
icy/mechanism separation in Hydra. In SOSP ’75: Proceedings of the fifth ACM
Symposium on Operating Systems Principles (New York, NY, USA, 1975), ACM,
pp. 132–140.

15. Lipner, S. B., Wulf, W. A., Schell, R. R., Popek, G. J., Neumann, P. G.,
Weissman, C., and Linden, T. A. Security kernels. In AFIPS ’74: Proceedings
of the May 6-10, 1974, National Computer Conference and Exposition (New York,
NY, USA, 1974), ACM, pp. 973–980.



16. Loscocco, P. A., and Smalley, S. D. Integrating Flexible Support for Security
Policies into the Linux Operating System. In Proceedings of the USENIX Annual
Technical Conference (June 2001), USENIX Association, pp. 29–42.

17. Mettler, A., Wagner, D., and Close, T. Joe-E: A Security-Oriented Subset of
Java. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2010 (February 2010).

18. Miller, M. S., Samuel, M., Laurie, B., Awad, I., and Stay, M. Caja: Safe ac-
tive content in sanitized javascript, May 2008. http://google-caja.googlecode.
com/files/caja-spec-2008-06-07.pdf.

19. Neumann, P. G. Principled assuredly trustworthy composable architectures.
Tech. rep., Computer Science Laboratory, SRI International, Menlo Park, Decem-
ber 2004.

20. Neumann, P. G., Boyer, R. S., Feiertag, R. J., Levitt, K. N., and Robin-
son, L. A Provably Secure Operating System: The System, Its Applications, and
Proofs, Second Edition. Tech. Rep. CSL-116, Computer Science Laboratory, SRI
International, May 1980.

21. Provos, N., Friedl, M., and Honeyman, P. Preventing privilege escalation. In
Proceedings of the 12th conference on USENIX Security Symposium - Volume 12
(Berkeley, CA, USA, 2003), SSYM’03, USENIX Association, pp. 16–16.

22. Reis, C., and Gribble, S. D. Isolating web programs in modern browser archi-
tectures. In EuroSys ’09: Proceedings of the 4th ACM European Conference on
Computer Systems (New York, NY, USA, 2009), ACM, pp. 219–232.

23. Robertson, P., and Laddaga, R. Adaptive security and trust. In Proceeings of
the Workshop on Adative Host and Network Security (Septmeber 2012), IEEE.

24. Saltzer, J. H. Protection and control of information sharing in Multics. In SOSP
’73: Proceedings of the fourth ACM Symposium on Operating System Principles
(New York, NY, USA, 1973), ACM.

25. Saltzer, J. H., and Schroeder, M. D. The protection of information in com-
puter systems. Proceedings of the IEEE 63, 9 (September 1975), 1278–1308.

26. Watson, R. N. M., Anderson, J., Laurie, B., and Kennaway, K. Capsicum:
Practical capabilities for UNIX. In Proceedings of the 19th USENIX Security Sym-
posium (Berkeley, CA, USA, 2010), USENIX Association.

27. Wilkes, M., and Needham, R. The Cambridge CAP Computer and Its Operating
System. Elsevier North Holland, New York, 1979.


