
4 FreeBSD Journal

The road to get us to
this point has been long and has involved a lot
of replacements of large parts of the tool-
chain. We’re now shipping clang as the
default C/C++ (and Objective-C) compiler and
libc++ as the default C++ standard library
implementation.

So why a new compiler and a new C++
standard library? The GNU Compiler Collection
has been a part of FreeBSD for most of its life.
There were painful upgrades from 2.x to 3.x
and then to 4.x. It was always a somewhat sore
spot for the project that a BSD-licensed operat-
ing system depended on a GPL’d compiler.

Some History
In 2007, GCC went to GPLv3. This license had
one or two clauses that some major down-
stream consumers found unacceptable and so
the decision was made not to import any
GPLv3 code into the base system. The version
of GCC stayed at 4.2.1.

In 2008, some developers at Apple released
clang, a C front end for the LLVM compiler
infrastructure. LLVM was originally offered to
the Free Software Foundation as a new back
end for GCC, but was turned down. Apple
started using the LLVM back end (and hired
the original developer of LLVM and a lot of
other people) and continued to improve it.

LLVM is far more than just a C compiler. It
provides a uniform intermediate representa-
tion that language front ends can generate,
optimisers can modify, and back ends can con-
vert into native code. One of its earliest was in
Apple’s OpenGL shader stack, where a naive
LLVM-based JIT compiler outperformed the
handwritten one by around 20% and worked

l a n g in10
FreeBSD 10 includes out-of-the-box support for

the majority of the C11 and C++11 standards.

B Y DAV I D C H I S N A L L

C

on all of Apple’s supported architectures.
In the last five years, the combination of clang

and LLVM has become a mature product. It’s
now the only compiler supported by Apple and
is one of the standard compilers shipped with
the Android NDK. Companies like ARM,
Qualcomm, Apple, Google, AMD, Intel, and
many others are contributing large amounts of
code to it.

Meanwhile, our old GCC has begun to look
quite dated. At the end of 2011, the C and C++
standards committees released specifications for
new dialects of their respective languages. The
extensions to C were relatively simple. The
changes to C++ were huge. Both required
changes to both the compiler and the standard
library.

The C Standard Library
The C standard library is a core feature of
FreeBSD. Various people have worked on
improving this to implement the new C11 fea-

tures, including unicode string support, atomics,
and a poorly designed threading library. The lat-
ter, sadly, was added to C11 because it was con-
sidered important to have atomics in the C stan-
dard, and that required a memory model that
supported parallelism, which meant that the C
standard needed a way of creating threads.

The C library also now implements the
POSIX2008 extended locale support. Prior to
this, lots of functions in the C library (including
printf()) were implicitly locale-aware. If you
called setlocale(), then you may get differ-
ent results from them. This includes fairly small

things, like the separator character for floating
point values. The setlocale() function sets
the locale globally, which means that it’s not safe
for multiple locales in a multithreaded program.

The POSIX2008 locale extensions provide a
per-thread locale, but more importantly they pro-
vide a set of variants of the standard C functions
that take an explicit locale as a parameter. Lots
of things use these APIs, including new versions
of GNOME, but the primary consumer that we’re
interested in here is libc++.

Libc++ is another component of the stack to
originate at Apple. Mostly developed by Howard
Hinnant, it is a completely new implementation
of the C++ standard library, designed from
scratch for C++11. Implementing C++11 support
in the standard library required quite invasive
changes (which broke backwards compatibility)
and so seemed like a good place to start from
scratch. This also allowed all of the standard
data structures to be redesigned in a way that
makes more sense for modern hardware, for
example focusing more on cache usage in
std::string.

The Benefits of C++11 and C11
Now that we’ve got a new C++ stack and an
improved C stack, what does that give us? I
briefly mentioned some of the new features in
C11, but my personal favorite is the new atomic
types. These are declared with the _Atomic()
type qualifier, for example:

_Atomic(int) x;

The qualifier ensures that you don’t acciden-
tally mix atomic and non-atomic accesses to the
same variable. Simple operations will automati-
cally become atomic. Some care is needed here.
For example, consider the following three lines:

x += 1;
x++;
x = x + 1;

The first two will be a sequentially-consistent
atomic increment. The last, however, will be a
sequentially-consistent atomic read, an add, and
then an atomic store. Sequentially consistent
means that atomic operations are all globally vis-
ible in the same order. For example, if one core
increments x and another increments y, then
either the increment to x or y is visible first, but
it is the same on all cores.

Jan/Feb 2014 5

At the opposite extreme, atomic operations
with relaxed ordering require that the operation
be atomic with respect to that single variable,
but not with respect to others. If x and y were
relaxed, then it would be acceptable for some
threads to see the new x and the old y, and
some to see the new y and old x.

The stdatomic.h header contains a lot of func-
tions that operate on atomic variables, and our
implementation contains several code paths to
make it work with old compilers. This is a pat-
tern that we’ve replicated elsewhere and things
like the _Thread_local storage qualifier and
similar are implemented in our standard headers
using extensions when using a compiler that
does not support them natively.

One other addition in C11 has made it possi-
ble to clean up some of our headers. The stan-
dard adds _Generic() expressions, which are
similar to switch statements selecting based on
the type, rather than the value, of an expression.
This is only useful in macros, but it’s useful in
several standard macros that must be defined in
C header files. In particular, there are several
related to numerics that are defined for all float-
ing-point types.

Two examples in this category are isinf()
and isnan(), which return true if the argu-
ment is infinite or a not-a-number value, respec-
tively. Our old code was determining the correct
path to call depending on the size of the argu-
ment. This meant that if you passed a 32-bit
int value, it would call the function that
expected a 32-bit float. This would always
return false (because no float that is created
by casting an int can possibly be infinite or not-
a-number), but almost certainly hid a logic bug
because there’s no reason why you’d ever want
to check these properties on an int.

We now use _Generic() for these and so
they will always go to the correct function and
you get an error if you try to call it with the
wrong argument. We found a few bug ports as
a result, and some quite bizarre behavior. For
example, both Google’s v8 and Mono had con-
figure script checks that tested whether
isnan(1) worked. In the Mono case, if they
detected that isnan(int) didn’t work, then
they declared their own isnan(double) to
use, which then conflicted with the system one.

Challenges with Clang
Getting the system ready for clang, initially as
the system compiler and then as the only com-
piler in the base system, has been an interesting

experience. A lot of the initial experiences were
simply from getting FreeBSD to compile without
warnings. Clang gives a lot more warnings than
our old gcc (gcc 4.8 is now at a similar quality,
although still has a slight tendency toward false
positives) and we try to ensure that all of our
code builds without warnings. Somewhat amus-
ingly, the worst offender in our tree for having
compiler warnings was gcc itself.

In the ports tree, things were somewhat dif-
ferent. We do maintain local patches for a lot of
programs, but ideally these should be small (and
should be pushed upstream where possible).

Most C code works fine with clang. The
biggest issue that we faced in the ports tree was
that clang defaults to C99 as the dialect when
invoked as clang or cc, whereas gcc defaults
to C89. It’s somewhat depressing that people
still invoke a C compiler as cc in 2013, because
cc was deprecated in the 1997 release of POSIX
and defined as accepting an unspecified version
of the C language. Back then, the choices were
K&R C or C89. If you wanted C89, you were
recommended to invoke the c89 utility. The next
release of POSIX added a c99 utility. Presumably
the next one to be published will also specify a
c11 utility.

The C99 specification was carefully designed
so that valid C89 programs were also valid C99
programs, so this shouldn’t have been a prob-
lem. Unfortunately, this didn’t quite work
because few people wrote C89 code, instead
they wrote C89 with GNU extensions. I said
GCC defaulted to C89 mode, but that’s not
quite correct: it defaulted to C89 with GNU
extensions (gnu89, as it’s known on the com-
mand line).

There is only one significant incompatibility
between C89 with GNU extensions and C99, and
that’s the handling of the inline keyword. The
differences meant that code that expected the
GNU inline rules would end up with functions
defined multiple times in C99 mode and so
would fail to link. This is relatively easy to fix—
just add -fgnu89-inline to the compiler
flags—but it needed to be done for every port
that had this kind of error. When you have over
20,000 ports, even simple fixes are a lot of work.

In C++, the problems were more pronounced.
The rules for symbol resolution in C++ are
incredibly complicated. This is especially true
inside templates, where the standard calls for a
two-stage lookup. Both GCC and the Microsoft
C++ compiler managed to get this wrong. Of
course, they did it in different wrong ways,

6 FreeBSD Journal

Clang in 10

Jan/Feb 2014 7

which was why it has traditionally been very diffi-
cult to move C++ code between compilers.

Clang benefited from all of this experience
and wrote the C++ parser to the letter of the
specification. This means that any standards-
compliant C++98 code will compile with clang.
These days, so does C++11 code, and some
C++1y code (C++1y is the draft that will most
likely become C++14). Unfortunately, when you
refuse to compile a popular open source pro-
gram, you don’t get much sympathy when you
turn around and say—“well, the code is invalid.”

The Challenge of Migration
For C code, there is no difficulty migrating. The C
ABI is defined by the target platform and both
Clang and GCC generate entirely compatible
code. This is also true for C++ code, if you’re
only talking about C++—the language.
Unfortunately, there is more to either language—
there is also the standard library. In the case of C,
this is FreeBSD libc. Again, this is shared between
compilers.

In the case of C++, it’s actually two libraries.
The smaller of the two implements the dynamic
parts of the language such as exceptions and the
dynamic_cast<> operator. The larger imple-
ments the standard template library (STL). In our
old stack, these were implemented by libsupc++
and libstdc++, respectively. Originally, these two
were statically linked together.

In the new stack, these are libcxxrt and libc++.
As part of the migration path, we wanted to
make it possible for programs to link against
libraries that used both libc++ and libstdc++. This
required modifying our libstdc++ to link against
libsup++ as a dynamic (shared) library, which
then allowed libmap.conf to switch between
them.

Unfortunately, life is never that simple. ELF
symbol versioning associates the symbol with
both the version and the library that it came
from and so existing binaries would fail to link on
symbols suddenly moved from
libstdc++.so to libsupc++.so. The solu-
tion to this was to make libstdc++ a filter
library. This allows it to, effectively, forward the
symbol resolution on to libraries it linked against.

With this done, it became possible to link
against both. The STL symbols have different
names and so you will use the ones from
whichever headers you included in the source
code. Unfortunately, because they have different
symbol names (and different binary layouts), you
can’t use them interchangeably. If you have a

library that has interfaces that use STL types (for
example, std::string) then both the library
and the things that call it must use the same STL
implementation.

This causes some problems in the ports collec-
tion, because a few libraries won’t compile with
clang and so can’t use libc++, whereas others
require C++11 and so won’t compile with our
base GCC. Using a GCC from ports doesn’t really
address this either, as many of the old C++ pro-
grams also won’t compile with a new GCC, and
the new libstdc++ is not binary-compatible with
the one that we have in the base system either.

Debugging
One other unfortunate problem with the clang
switch is that clang now emits debug informa-
tion conforming to version 4 of the DWARF stan-
dard. Soon, it will default to DWARF 5, which
includes support for much smaller debug info
tables and for separating out the debug info into
separate files during compilation so that they can
be linked separately.

Unfortunately, the old version of the GNU
debugger (GDB) that we include in the base sys-
tem can only support DWARF 2. For 10, we’ve
imported the LLVM Debugger (LLDB) and Ed
Maste has been working (with FreeBSD
Foundation funding) on the FreeBSD port.

LLDB, like the rest of LLVM, is very modular. It is
intended as a set of libraries that allow debugging
features to be added to various applications, rang-
ing from command-line tools to IDEs. It is largely
developed by Apple and so remote debugging was
a core part of the design, allowing ARM devices to
be debugged from x86 desktops.

All of these are nice features, but unfortunately
LLDB isn’t quite ready for enabling by default in the
10 release. It’s in the tree, so feel free to upgrade
your sources and try building the latest version. We
expect to enable it by default in 10.1.

Architectural Problems
These days, FreeBSD has one tier 1 architecture:
x86 (in 32-bit and 64-bit variants). ARMv6 and
newer are very close to being tier 1 as well.
These two are well supported by Clang and by
the LLVM back end. Unfortunately, we also have
a lot of tier 2 architectures, such as SPARC,
PowerPC, and MIPS, with less good support.

LLVM has quite good support for 64-bit
PowerPC, developed largely by Argone National
Laboratory, but not nearly as good support for
32-bit PowerPC. Since Apple switched to Intel,
these architectures have been dead in the con-
sumer PC market, but they’re still popular in a
lot of places where people ship embedded
FreeBSD-derived systems, especially in the auto-
motive industry.

The MIPS back end is now able to compile
LLVM itself, which is quite an achievement given
the size and complexity of the code base, but it’s
still a little way away from being able to compile
the FreeBSD kernel.

SPARC and IA64 are two with less certain
futures. The SPARC back end in LLVM is one of
the oldest ones, yet it is still not production-
ready. The Itanium back end was removed, after
being unmaintained for a while. Intel doesn’t
seem to be pushing Itanium very hard, and
Oracle seems to regard SPARC as a platform for
running Solaris-based Oracle appliances, so the
future of these architectures is not that certain
anyway, but it would be a shame to drop sup-
port for them in FreeBSD while there are still sys-
tems using them.

Going Forward
The goal in all of this was to make FreeBSD a
modern development platform. We’ve achieved
that. FreeBSD 10 shipped with the most complete
C11 and C++11 (and C++1y) implementations of
any system to date. We now have a modern com-
piler and C++ stack, with an active upstream com-
munity that is engaged with FreeBSD as a con-
sumer, and a number of people (myself included)
who contribute to both projects.

We still have a few missing pieces for a com-
pletely BSD-licensed toolchain, however. We cur-
rently ship a lot of GNU binutils. Some things,
such as the GNU assembler, are easy to replace.
The LLVM libraries contain all of the required
functionality; they just require small tools to be
written to implement them.

The one exception is the linker. Like compil-
ers, linkers are quite complex pieces of software.
We’re currently evaluating two linkers to replace
GNU ld. The first, MCLinker, was originally
developed by MediaTek using LLVM libraries and
now has a larger community. It currently ships,
was one of the linkers in the Android SDK, and
can link all of the base system, but lacks support
for symbol versioning (this may have been fin-
ished by the time you’re reading this, as work is
ongoing to implement it).

The other option is lld, the LLVM linker. This is
a more complex design and is not yet as
advanced, but does have some large corporate
backers such as Sony (Sony is a FreeBSD con-
sumer), and so might be a better long-term

prospect.
Whichever we select, FreeBSD

will continue to pick the best
tools for the job. We hope to
have a fully BSD licensed tool-
chain by default for 11.0, and as
optional components in the 10.x
series. Being BSD licensed is
always nice, but we won’t switch
until the tools are also better. •

David Chisnall is a researcher at the
University of Cambridge Computer
Laboratory and a member of the
FreeBSD Core Team. He is also an
active contributor to several other
open source projects, including
LLVM, GNUstep, and Étoilé. In
between writing code, he has written
several books. When not in front of a
computer, he dances Cuban salsa
and Argentine tango.

8 FreeBSD Journal

Clang in 10

