10

The FreeBSD kernel pros
vides a set of system oértrol
nodes that can be used to
query and set state infor-
mation. These nodes
can be used to
obtain a wide variety
of statistics and con-
figure parameters. The
information accepted and
provided by each node can
use one of several types-
including integers, strings,
and structures.

FreeBSD Journal

BY JOHN BALDWIN

THE NODES are organized as a tree. Each
node is assigned a unique number within its
level. Nodes are identified internally by an array
of node numbers that traverses the tree from
the root down to the node being requested.
Most nodes in the tree have a name, and
named nodes may be identified by a string of
names separated by dots. For example, there is
a top-level node named “kern” that is assigned
the number one (1), and it contains a child node
named “ostype” that is assigned the number
one (1). This node’s address is 1.1, but it may
also be referred to by its full name:
“kern.ostype”. Users and applications generally
use node names rather than node numbers.

Accessing System Control Nodes

The standard C library on FreeBSD provides sev-
eral routines for accessing system control nodes.
The sysctl(3) and sysctlbyname(3) functions
access a single node. The sysctl(3) function uses
the internal array of numbers to identify a node
while sysctlbyname(3) accepts a string contain-
ing the node’s full name. Each sysctl access can

query the current state of the node, set the
state of the node, or perform both operations.

The sysctinametomib(3) function maps a
node’s full name to its internal address. This
operation uses an internal sysctl node and is a
bit expensive, so a program that queries a
control node frequently can use this routine
to cache the address of a node. It can then
query the node using sysctl(3) rather than
sysctlbyname(3).

Some control nodes have a named prefix with
unnamed leaves. An example of this is the
“kern.proc.pid” node. It contains a child node
for each process. The internal address of a given
process’s node consists of the address of
“kern.proc.pid” and a fourth number which cor-
responds to the pid of the process.

Example 1 demonstrates using this to fetch
information about the current process.

Simple Control Nodes

In the kernel, the <sys/sysctl.h> header provides
several macros to declare control nodes. Each
declaration includes the name of the parent
node, a number to assign to this node, a name
for the node, flags to control the node’s behav-
ior, and a description of the node. Some decla-
rations require additional arguments. The parent
node is identified by its full name, but with a
single underscore as a prefix and dots replaced
by underscores. For example, the “foo.bar” par-
ent node would be identified by “_foo_bar”. To
declare a top-level node, use an empty parent
name. The number should use the macro
OID_AUTO to request that the system assign a
unique number. (Some nodes use hardcoded
numbers for legacy reasons, but all new nodes
should use system-assigned numbers.) The flags
argument must indicate which types of access
the node supports (read, write, or both) and can
also include other optional flags. The description
should be a short string describing the node. It
is displayed instead of the value when the “-d”
flag is passed to sysctl(8).

Integer Nodes

The simplest and most common control node is
a leaf node that controls a single integer. This
type of node is defined by the SYSCTL INT()
macro. It accepts two additional arguments; a
pointer and a value. If the pointer is non-NULL,
it should point to an integer variable which will
be read and written by the control node (as
specified in the flags argument). If the pointer is
NULL, then the node must be a read-only node
that returns the value argument when read.

struct kinfo proc kp;
int i, mib[4];
size t len;

/* Fetch the address of the "kern.proc.pid"
prefix. */

len = 3;

sysctlnametomib("kern.proc.pid", mib, &len);

/* Fetch the process information for the
current process. */

len = sizeof(kp);

mib[3] = getpid();

sysctl(mib, 4, &kp, &len, NULL, 0);

Example 1
SYSCTL INT(kern, OID AUTO, one, CTLFLAG RD,
NULL, 1, "Always returns one");

int frob = 500;
SYSCTL INT(kern, OID AUTO, frob, CTLFLAG RW,

&frob, 0, "The \"frob\" variable");
Example 2
Example 2 defines two integer sysctl nodes: .
“kern.one” is a read-only node that always !

returns the value one and “kern.frob” is a read-
write node that reads and writes the value of
the global “frob” integer.

Additional macros are available for several
integer types including: SYSCTL_ UINT () for
unsigned integers, SYSCTL LONG () for signed
long integers, SYSCTL_ULONG () for unsigned
long integers, SYSCTL_QUAD () for signed 64-
bit integers, SYSCTL_UQUAD () for 64-bit un-
signed integers, and SYSCTL_COUNTER_U64 ()
for 64-bit unsigned integers managed by the
counter(9) API. Only the SYSCTL_INT() and
SYSCTL_UINT () macros may be used with a
NULL pointer. The other macros require a non-
NULL pointer and ignore the value parameter.

Other Node Types

The SYSCTL_STRING() macro is used to
define a leaf node with a string value. This
macro accepts two additional arguments: a
pointer and a length. The pointer should point
to the start of the string. If the length is zero,
the string is assumed to be a constant string and
attempts to write to the string will fail (even if
the node allows write access). If the length is
non-zero, it specifies the maximum length of the
string buffer (including a terminating null char-

Jan/Feb 2014

11

IMPLEMENTING CONTROL NODES

static SYSCTL NODE(, OID AUTO, demo, 0, NULL,
"Demonstration tree");

static char name buffer[64] = "initial name";

SYSCTL STRING(_demo, OID AUTO, name,
CTLFLAG_RW, name buffer,
sizeof (name buffer), "Demo name");

static struct demo stats {
int demo reads;
int demo writes;
} stats;
SYSCTL STRUCT(_ demo, OID AUTO, status,
CTLFLAG_RW, &stats, demo stats,
"Demo statistics");

SYSCTL_OPAQUE(_demo, OID AUTO, mi switch,
CTLFLAG RD, &mi_switch, 64, "Code",
"First 64 bytes of mi switch()");

Example 3

acter) and attempts to write a string longer than
the buffer’s size will fail.

The SYSCTL_STRUCT () macro is used to
define a leaf node whose value is a single C
struct. This macro accepts one additional pointer
argument which should point to the structure to
be controlled. The size of the structure is
inferred from the type.

The SYSCTL_OPAQUE () macro is used to
define a leaf node whose value is a data buffer
of unspecified type. The macro accepts three
additional arguments: a pointer to the start of
the data buffer, the length of the data buffer,
and a string describing the format of the data

The SYSCTL_NODE () macro is used to
define a branch node. This macro accepts one
additional argument which is a pointer to a
function handler. For a branch node with explicit
leaf nodes (declared by other SYSCTL_* ()
macros) the pointer should be NULL. The macro
may be prefixed with static to declare a
branch node private to the current file. A public
node can be forward declared in a header for
use by other files via the SYSCTL_DECL ()
macro. This macro accepts a single argument
which is the full name of the node specified in
the format used for a parent node in the other
macro invocations. Example 3 defines a top level
node with three leaf nodes describing a string
buffer, a structure, and an opaque data buffer.

Node Flags

Each node definition requires a flags argument.
All leaf nodes and branch nodes with a non-
NULL function handler must specify the permit-
ted access (read and/or write) in the flags field.
The flags field can also include zero or more of
the flags listed in Table 1.

Complex Control Nodes

System control nodes are not limited to simply
reading and writing existing variables. Each leaf
node includes a pointer to a handler function
that is invoked when the node is accessed. This
function is responsible for returning the “old”
value of a node as well as accepting “new” val-
ues assigned to a node. The standard node
macros such as SYSCTL_INT() use predefined
handlers in sys/kern/kern_sysctl.c.

A leaf node with a custom handler function is
defined via the SYSCTL_PROC () macro. In

buffer addition to the standard arguments accepted by
the other macros, SYSCTL_PROC ()accepts a
3 FLAG PURPOSE
ble1 h CTLFLAG_ANYBODY All users can write to this node. Normally only the superuser can

write to a node.

12

CTLFLAG_VNET

CTLFLAG_MPSAFE

CTLFLAG_SECURE Can only be written if securelevel is less than or equal to zero.
CTLFLAG_PRISON
CTLFLAG_SKIP..

Can be written to by a superuser inside of a prison created by jail(2).
Hides this node from iterative walks of the tree such as when
sysctl(8) lists nodes.

Handler routine does not require Giant. All of the simple node types
set this flag already. It is only required explicitly for nodes that use a
custom handler.

Can be written to by a superuser inside of a prison if that prison
contains its own virtual network stack.

FreeBSD Journal

FLAG MEANING

CTLTYPE_NODE This node is a branch node and does not have an associated value.
CTLTYPE_INT ... This node describes one or more signed integers.
CTLTYPE_UINTccooeei This node describes one or more unsigned integers.
CTLTYPE_LONG..............ooonn. This node describes one or more signed long integers.
CTLTYPE_ULONG This node describes one or more unsigned long integers.
CTLTYPE_S64ccooe. This node describes one or more signed 64-bit integers.
CTLTYPE_U6Acooe. This node describes one or more unsigned 64-bit integers.
CTLTYPE_STRING This node describes one or more strings.
CTLTYPE_OPAQUE.................... This node describes an arbitrary data buffer.
CTLTYPE_STRUCT This node describes one or more data structures.

pointer argument named “arg1”, an integer
argument named “arg2”, a pointer to the han-
dler function, and a string describing the format
of the node’s value. The flags argument is also
required to specify the type of the node’s value.

Node Types
The type of a node’s value is specified in a field
in the node’s flags. The standard node macros all
work with a specific type and adjust the flags
argument to include the appropriate type. The
SYSCTL_PROC () macro does not imply a specif-
ic type, so the type must be specified explicitly.
Note that all nodes are allowed to return or
accept an array of values and the type simply
specifies the type of one array member. The stan-
dard node macros all return or accept a single
value rather than an array. The available types are
listed in Table 2.

Note that since

format string. The available format strings are
listed in Table 3.

Handler Functions
A system control node handler can be used to
provide additional behavior beyond reading and
writing an existing variable. Handlers can be used
to provide input validation such as range checks
on new node values. Handlers can also generate
temporary data structures to return to userland.
This is commonly done for handlers which return
a snapshot of system state such as a list of open
network connections or the process table.
Handler functions accept four arguments and
return an integer error code. The <sys/
sysctl.h> header provides a macro to define
the function arguments:
SYSCTL_HANDLER_ARGS. It defines four argu-

ments: “oidp”, “arg1”, “arg2”, and “req”. The

SYSCTL_PROC () only defines
leaf nodes, CTLTYPE NODE FORMAT MEANING
should not be used. Branch _ _
nodes W|th Custom handlers "A" An ASC” St”ng Used W|th CTLTYPE_STR'NG
are described below. i L A signed integer. Used with CTLTYPE_INT.
) "u” L An unsigned integer. Used with CTLTYPE_UINT.
Node Format Strings o . . .
Each node has a format string IK".............. An integer yvhose value is in units of one-tenth of a
in addition 1o a tvoe. The degree Kelvin. The sysctl(8) utility will convert the value
sysctl(®) utility us>e/rs) this string to Celsius before displaying. Used with CTLTYPE_UINT.
to format the node's Value AS "L" A Slgned |Ong Iﬂteger Used Wlth CTLTYPE_LONG
with the node type, most of LU An unsigned long integer. Used with CTLTYPE_ULONG.
tEe]fta”dard mﬁc_fcl)s STF%GC'fY Q" A signed 64-bit integer. Used with CTLTYPE_S64.
tsfs C";’;”ﬁgg&'fg Z‘n J € “QU.. . An unsigned 64-bit integer. Used with CTLTYPE_U64.
SYSCTIL_PROC Macros require ”S,<foo>".....A C structure of type struct foo. Used with
the format to be specified CTLTYPE_STRUCT. The sysctl(8) utility understands a few
explicitly. Most format strings structure types such as struct timeval and
are tied to a specific type and struct loadavg.
most types only have a single

Jan/Feb 2014

13

14

IMPLEMENTING CONTROL NODES

“oidp” argument points to the struct
sysctl oid structure that describes the
node whose handler is being invoked. The
"arg1” and “arg2"” arguments hold the values
assigned to the “arg1” and “arg2” arguments
to the SYSCTL PROC () invocation that
defined this node. The “req” argument points
to a struct sysctl regq structure that
describes the specific request being made. The
return value should be zero on success or an
error number from <sys/errno.h> on fail-
ure. If EAGAIN is returned, then the request
will be retried within the kernel without
returning to userland or checking for signals.

Example 4 defines two integer nodes with a
custom handler that rejects attempts to set an
invalid value. It uses the predefined handler
function sysctl handle int() thatis
used to implement SYSCTL INT() to update
a local variable. If the request attempts to set
a new value, it validates the new value and
only updates the associated variable if the new
value is accepted.

This example uses a predefined handler
(sysctl handle int()) to publish the old
value and accept a new value. Some custom
handlers need to manage these steps directly.
The macros SYSCTL IN() and

€
4 *

* maximum value.
*/

Example 4
static int

'argl' points to the variable being exported, and 'arg2'
This assumes that negative values are not permitted.

SYSCTL OUT () are provided for this purpose.
Both macros accept three arguments: a point-
er to the current request (“req”) from
SYSCTL_HANDLER ARGS, a pointer to a
buffer in the kernel’s address space, and a
length. The SYSCTL IN() macro copies data
from the caller’s “new” buffer into the kernel
buffer. The SYSCTL OUT() macro copies
data from the kernel buffer into the caller’s
“old” buffer. These macros return zero if the
copy is successful and an error number if it
fails. In particular, if the caller buffer is too
small, the macros will fail and return ENOMEM.
These macros can be invoked multiple times.
Each invocation advances an internal offset
into the caller’s buffer. Multiple invocations of
SYSCTL_OUT () append the kernel buffers
passed to the macro to the caller’s “old”
buffer, and multiple invocations of
SYSCTL_IN() will read sequential blocks of
data from the caller's “new” buffer.

One of the values returned to userland after
a sysctl(3) invocation is the amount of data
returned in the “old” buffer. The count is
advanced by the full length passed to
SYSCTL_OUT () even if the copy fails with an
error. This can be used to allow userland to
query the necessary length of an “old” buffer

specifies a

sysctl handle int range(SYSCTL HANDLER ARGS)

{
int error, value;
value = *(int *)argl;
error = sysctl handle int(oidp, &value, 0, req);
if (error != 0 || reg->newptr == NULL)
return (error);
if (value < 0 || value >= arg2)
return (EINVAL);
*(int *)argl = value;
return (0);
}

static int foo;
SYSCTL PROC(_debug, OID AUTO, foo,
sysctl handle int range, "I",

static int bar;

SYSCTL PROC(_debug, OID AUTO, bar,
sysctl handle int range, "I",

FreeBSD Journal

CTLFLAG_RW | CTLTYPE INT, &foo, 100,
"Integer between 0 and 99");

CTLFLAG_RW | CTLTYPE INT, &bar, 0x100,
"Integer between 0 and 255");

for a node that returns a variable-sized buffer.
If it is expensive to generate the data copied to
the “out” buffer and a handler is able to esti-
mate the amount of space needed, then the
handler can treat this case specially. A caller
queries length by using a NULL pointer for the
“old"” buffer. The handler can detect this case
by comparing req->oldptr against NULL.
The handler can then make a single call to
SYSCTL_OUT() passing NULL as the kernel
buffer and the total estimated length as the
length. If the size of the data changes fre-
quently, then the handler should overestimate
the size of the buffer so that the caller is less
likely to get an ENOMEM error on the subse-
qguent call to query the node’s state.

The SYSCTL_OUT() and SYSCTL_IN()
Macros can access Memory in a user process.
These accesses can trigger page faults if a user
page is not currently mapped. For this reason,
non-sleepable locks such as mutexes and read-
er/writer locks cannot be held when invoking
these macros. Some control nodes return an
array of state objects that correspond to a list
of objects inside the kernel where the list is
protected by a non-sleepable lock. One option
such handlers can use is to allocate a tempo-
rary buffer in the kernel that is large enough
to hold all of the output. The handler can pop-
ulate the kernel buffer while it walks the list
under the lock and then pass the populated
buffer to SYSCTL_OUT () at the end after
releasing the lock. Another option is to drop
the lock around each invocation of
SYSCTL_OUT () while walking the list. Some
handlers may not want to allocate a temporary
kernel buffer because it would be too large,
and they may wish to avoid dropping the lock
because the resulting races are too painful to
handle. The system provides a third option for
these handlers: the “old” buffer of a request
can be wired by calling
sysctl wire old buffer (). Wiring the
buffer guarantees that no accesses to the
buffer will fault allowing SYSCTL_OUT() to
be used while holding a non-sleepable lock.
Note that this option is only available for the
“old” buffer. There is no corresponding func-
tion for the “new” buffer. The
sysctl wire old buffer () function
returns zero if it succeeds and an error number
if it fails.

If a sysctl node wishes to work properly in a
64-bit kernel when it is acccessed by a 32-bit
process, it can detect this case by checking for

the SCTL._MASK32 flag in req->flags. For
example, a node that returns a long value
should return a 32-bit integer in this case. A
node that returns an array of structures corre-
sponding to an internal list of objects may
need to return an array of structures with an
alternate 32-bit layout.

If a node allows the caller to alter its state
via a “new"” value, the handler should com-
pare req->newptr against NULL to deter-
mine if a “new” value is supplied. A handler
should only invoke SYSCTL IN() and
attempt to set a new value if req->newptr
IS NON-NULL.

An example of a custom node handler that
uses many of these features is the implemen-
tation of the “kern.proc.proc” node. The in-
kernel implementation is more complex, but a
simplified version is provided in Example 5.

Complex Branch Nodes

A branch node declared via SYSCTL,_NODE ()
can specify a custom handler. If a handler is
specified, then it is always invoked when any
node whose address begins with the address
of the branch node is accessed. The handler
functions similarly to the custom handlers
described above. Unlike SYSCTL_PROC (), the
"arg1” and "arg2"” parameters are not config-
urable. Instead, “arg1” points to an integer
array containing the address of the node being
accessed, and “arg2” contains the length of
the address. Note that the address specified by
“arg1” and “arg2” is relative to the branch
node whose handler is being invoked. For
example, if a branch node has the address 1.2
and node 1.2.3.4 is accessed, the handler for
the branch node will be invoked with “arg1”
pointing to an array containing “3, 4” and
“arg2"” set to 2. A simplified version of the
“kern.proc.pid” handler is given below as
Example 6. Recall that this is the node invoked
by Example 1.

Dynamic Control Nodes

The control nodes described previously are
static control nodes. Static nodes are defined
in a source file with a fixed name and are cre-
ated either when the kernel initializes the sys-
tem control node subsystem or when a kernel
module is loaded. Static nodes in a kernel
module are removed when the kernel module
is unloaded. The arguments passed to handlers
for static nodes are also resolved at link time.
This means that static nodes generally operate

Jan/Feb 2014

15

16

Example 5

FreeBSD

static int
sysctl kern proc proc(SYSCTL HANDLER ARGS)
{
#ifdef COMPAT FREEBSD32
struct kinfo proc32 kp32;
#endif
struct kinfo proc kp;
struct proc *p;
int error;

if (reg->oldptr == NULL) {

#ifdef COMPAT FREEBSD32

if (reg->flags & SCTL MASK32)

return (SYSCTL OUT(req, NULL, (nprocs + 5) *
sizeof(struct kinfo proc32)));

#endif

return (SYSCTL OUT(req, NULL, (nprocs + 5) *

sizeof (struct kinfo proc)));

}

error = sysctl wire old buffer(req, 0);
if (error != 0)
return (error);
sx_slock(&allproc lock);
LIST FOREACH(p, &allproc, p list) {
PROC_LOCK(p);
fill kinfo proc(p, &kp);
#ifdef COMPAT FREEBSD32
if (reg->flags & SCTL MASK32) {
freebsd32 kinfo proc out(&kp, &kp32);

error = SYSCTL OUT(req, &kp32, sizeof(kp32));
} else
#endif
error = SYSCTL OUT(req, &kp, sizeof(kp));
PROC_UNLOCK(Dp) ;
if (error != 0)
break;
}
sx_sunlock(&allproc lock);
return (error);
}

SYSCTL PROC(_kern proc, KERN PROC PROC, proc, CTLFLAG_ RD |
CTLFLAG_MPSAFE | CTLTYPE STRUCT, NULL, 0, sysctl kern proc proc,
"S,kinfo proc", "Process table");

on global variables.
The kernel also provides support for dynam-
ic control nodes. Unlike static nodes, dynamic

nodes can be created or destroyed at any time.

They can also use dynamically generated
names and reference dynamically allocated
variables. Dynamic nodes can be created as
new children of both static and dynamic
nodes.

sysctl Contexts
To safely remove dynamic control nodes, each

node must be explicitly tracked and removed in
a safe order (leaves before branches). Doing
this by hand is tedious and error prone, so the
kernel provides a sysctl context abstraction. A
sysctl context is a container that tracks zero or
more dynamic control nodes. It allows all of
the control nodes it contains to be safely
removed in an atomic transaction.

The typical practice is to create one context
for each group of related nodes via a call to
sysctl ctx init(). All of the nodes are
added to the context during initialization (such

as when a driver attaches to a device). Only a
reference to the context has to be maintained.
A single call to sysctl ctx free() during
teardown (such as when a driver detaches from
a device) is sufficient to remove the entire
group of control nodes.

Adding Dynamic Control Nodes

Dynamic control nodes are created by using one
of the SYSCTL_ADD_* () macros from
<sys/sysctl.h>. Each of these macros cor-
responds to a macro used to create static node
with the following differences:

e The dynamic macros are invoked within a
code block rather than at the top level. The
dynamic macros return a pointer to the created
node.

¢ The dynamic macros add an additional
argument that is a pointer to the sysctl context
the new node should be associated with. This is
given as the first argument to the macro.

e The parent argument is specified as a
pointer to the node list belonging to the parent
node. Two helper macros are provided to locate
these pointers. The SYSCTL_STATIC CHIL-
DREN () macro should be used when the par-
ent node is a static control node. It takes the
parent node’s name as the sole argument. The
name is formatted in the same manner that a
parent is specified when declaring a static node.
For parents that are dynamic nodes, the
SYSCTL CHILDREN () macro should be used
instead. It accepts a pointer to the parent node
as returned by a previous invocation of
SYSCTL ADD NODE() as its sole argument.

¢ The name argument is specified as a point-
er to a C string rather than an unquoted identi-
fier. The kernel will create a duplicate of this
string to use as the name of the node. This
allows the name to be constructed in a tempo-
rary buffer if needed.

¢ The kernel will also create a duplicate of
the description argument so that it can be con-
structed in a temporary buffer if needed.

Example 7 defines two functions to manage
a dynamic sysctl node. The first function initial-
izes a sysctl context and creates the new node.
The second function destroys the node and
destructs the context.

Tunables

Another kernel API that is often used in con-
junction with control nodes is the tunable API.
Tunables are values stored in the kernel’s envi-
ronment. This environment is populated by the
boot loader and can also be modified at run-

static int

sysctl kern proc_ pid(SYSCTL HANDLER ARGS)

{
struct kinfo proc kp;
struct proc *p;
int *mib;
if (arg2 == 0)
return (EISDIR);
if (arg2 != 1)
return (ENOENT);
mib = (int *)argl;
p = pfind(mib[0]);
if (p == NULL)
return (ESRCH);
fill kinfo proc(p, &kp);
PROC_UNLOCK(p) ;
return (SYSCTL OUT(req, &kp,
sizeof(kp)));
}

static SYSCTL NODE(_kern proc, KERN_PROC_PID,

pid, CTLFLAG RD | CTLFLAG MPSAFE
sysctl kern proc pid,
"Process information");

Example 6

time by the kenv(1) command. The kernel envi-
ronment consists of named variables with string
values similar to the environment of user
processes. The API provides two sets of macros
in <sys/kernel.h>.

The first set (TUNABLE_ * ()) are declared at
the top-level similar to static control nodes and
fetch the value of a tunable at either boot time
or when a module is loaded. The second set of
macros (TUNABLE * FETCH()) can be used in
a code block to fetch a tunable at runtime.
Each macro accepts a C string name as the first
argument that specifies the name of the tun-
able to read. When using tunables in conjunc-
tion with control nodes, the convention is to
use the name of the control node as the tun-
able's name.

The tunable API supports several integer
types. Each macro accepts a pointer to an inte-
ger variable of the corresponding type as the
second argument. Each macro invocation
searches the kernel’s
environment for the
requested tunable. If

SUFFIX VALUE

the tunable is found k 2710
and the entire string m 2720
value is parsed suc- g 2130
cessfully, the integer t IALQ

variable is changed to

Jan/Feb 2014

[

rable '%.
&5

11

.

18

-f{?
-

Example 7

FreeBSD

IMPLEMENTING CONTROL NODES

static struct sysctl ctx list ctx;

static int

load(void)

{
static int value;
int error;

error =
if (error)
return (error);

sysctl ctx_init(&ctx);

if (SYSCTL ADD INT(&ctx, SYSCTL STATIC CHILDREN(debug), OID AUTO,

"dynamic", CTLFLAG RW, &value, 0,

return (ENXIO);
return (0);

}

static int
unload(void)

{

"An integer") == NULL)

return (sysctl ctx free(&ctx));

the parsed value. Note that overflows are
silently ignored. If the tunable is not found or
contains invalid characters, the integer variable
is left unchanged. The macros provided for
integers are: TUNABLE INT () for signed
integers, TUNABLE _LONG () for signed long
integers, TUNABLE ULONG () for unsigned
long integers, and TUNABLE QUAD() for
signed 64-bit integers.

The string value of an integer tunable is
parsed in the same manner as strtol(3) with a
base of zero. Specifically, a string that begins
with “0x" is interpreted as a hexadecimal
value, a string that begins with “0” is inter-
preted as an octal value, and all other strings
are interpreted as a decimal value. In addition,
the string may contain an optional single char-
acter suffix that specifies a unit. The value is
scaled by the size of the unit. The unit is case-
insensitive. Supported units are described in
Table 4.

String tunables are also supported by the
TUNABLE_STR() macro. This macro accepts
three arguments: the name of the tunable, a
pointer to a character buffer, and the length
of the character buffer. If the tunable does not
exist in the kernel environment, the character
buffer is left unchanged. If the tunable does
exist, its value is copied into the buffer. The
string in the buffer is always terminated with a

null character. The value will be truncated if it
is too long to fit into the buffer.

The TUNABLE * FETCH() macros accept
the same arguments as the corresponding
TUNABLE * () macro. They also have the
same semantics with one additional behavior.
These macros return an integer value of zero if
the tunable is found and successfully parsed,
and non-zero otherwise.

System control nodes that have a corre-
sponding tunable should use either the
CTLFLAG_RDTUN or CTLFLAG_RWTUN flag to
specify the allowed access to the node. Note
that this does not cause the system to implicit-
ly fetch a tunable based on the node’s name.
The tunable must be fetched explicitly.
However, it does provide a hint to the sysctl(8)
utility that is used in diagnostic messages.

Example 8 demonstrates the use of a tun-
able in a device driver to fetch a default
parameter. The parameter is available as a
read-only control node that can be queried by
the user (this is helpful for the user when
determining the default value). It also includes
a portion of the attach routine where the
global tunable is used to set the initial value of
a per-device control variable. A dynamic sysctl
is created for each device to allow the variable
to be changed for each device independently.
The sysctl is stored in the per-device sysctl tree

static SYSCTL NODE(hw, OID AUTO, foo, CTLFLAG RD, NULL, Example 8

"foo(4) parameters");

static int foo widgets = 5;

TUNABLE INT("hw.foo.widgets", &foo widgets);

SYSCTL INT(hw foo, OID AUTO, widgets, CTLFLAG RDTUN, &foo widgets, 0,
"Initial number of widgets for each foo(4) device");

static int
foo attach(device t dev)

{
struct foo softc *sc;
char descr[64]; /‘
sc = device get softc(dev); >
sc->widgets = foo widgets;
snprintf (descr, sizeof(descr), "Number of widgets for %s",
device get nameunit(dev));
SYSCTL ADD INT(device get sysctl ctx(dev),
SYSCTL CHILDREN(device get sysctl tree(dev)), OID AUTO,
"widgets", CTLFLAG RW, &sc->widgets, 0, descr);
}
created by the new-bus subsystem. It also uses The interface for tunables is defined in
the per-device sysctl context so that the sysctl <sys/kernel.h> and the implementation
is automatically destroyed when the device is can be found in sys/kern/kern_
detached. envronment.c.
The interface for system control nodes is
defined in <sys/sysctl.h> and the imple- John Baldwin joined the FreeBSD Project as
mentation can be found in a committer in 1999. He has worked in sev-
sys/kern/kern_sysctl.c. It may be par- eral areas of the system, including SMP
ticularly useful to examine the implementation infrastructure, the network stack, virtual
of the predefined handlers. First, they demon- memory, and device driver support. John
strate typical uses of SYSCTL IN() and has served on the Core and Release
SYSCTL_OUT(). Second, they can be used to Engineering teams and organizes an annu-
marshal data in custom handlers. al FreeBSD developer summit each spring.

SUBSCRIBE TO

@ FreeBSkpurnat

AVAILABLE AT THESE APP STORES NOW

Available at # Download on the ANDROID APP ON

amazon [¢ App Store § P> Google play

Jan/Feb 2014

19

