
32 FreeBSD Journal

difference is that ZFS is, in
fact, more than just a file sys-
tem, as it combines the roles
of RAID controller, Volume

Manager, and File System.
Most previous file systems were designed to

be used on a single device. To overcome this,
RAID controllers and volume managers would
combine a number of disks into a single logical
volume that would then be presented to the
file system. A good deal of the power of ZFS
comes from the fact that the file system is inti-
mately aware of the physical layout of the
underlying storage devices and, as such, is able
to make more informed decisions about how to
reliably store data and manage I/O operations.

Originally released as part of OpenSolaris,
when Sun Microsystems was later acquired by
Oracle, it was decided that continued develop-
ment of ZFS would happen under a closed
license. This left the community with ZFS v28
under the original Common Development and

Distribution License (CDDL). In order to contin-
ue developing and improving this open source
fork of ZFS, the OpenZFS project was creat-
ed—a joint effort between FreeBSD, IllumOS,
the ZFS-On-Linux project, and many other
developers and vendors. This new OpenZFS
(included in FreeBSD 8.4 and 9.2 or later)
changed the version number to “v5000 -
Feature Flags”, to avoid confusion with the
continued proprietary development of ZFS at
Oracle (currently at v34), and to ensure com-
patibility and clarity between the various open
source versions of ZFS. Rather than continuing
to increment the version number, OpenZFS has
switched to “Feature Flags” as new features
are added. The pools are marked with a prop-
erty, feature@featurename, so that only
compatible versions of ZFS will import the
pool. Some of these newer properties are
read-only backwards compatible, meaning that
an older implementation can import the pool
and read, but not write to it, because they lack
support for the newer features.

T H E F U T U R E O F S T O R A G E

THE Z FILE SYSTEM (ZFS)
created by Jeff Bonwick and Matthew Ahrens at Sun Microsystems

is fundamentally different from previous file systems.

•

B Y A L L A N J U D E

T H E

KEY

What Makes ZFS Different?
The most important feature sets in ZFS are those
designed to ensure the integrity of your data.
ZFS is a copy-on-write (COW) file system, which
means that data is never overwritten in place,
but rather the changed blocks are written to a
new location on the disk and then the metadata
is updated to point to that new location. This
ensures that in the case of a shorn write (where
a block was being written and was interrupted
before it could finish) the original version of the
data is not lost or corrupted, as it would be in a
traditional file system. In the case of a power
failure or system crash, the file is left in an
inconsistent state in which it contains a mix of
new and old data. Copy-on-write also enables
another powerful feature—snapshots. ZFS
allows you to instantly create a consistent point-
in-time snapshot of a dataset (and optionally of
all its child datasets). The new snapshot takes no
additional space (aside from a miniscule amount
of metadata) and is read-only. Later, when a
block is changed, the older block becomes part
of the snapshot, rather than being reclaimed as
free space. There are now two distinct versions
of the file system, the snapshot (what the file
system looked like at the time the snapshot was
taken) and the live file system (what it looks like
now). The only additional space consumed are
those blocks that have been changed; the
unchanged blocks are shared between the snap-
shot and the live file system until they are modi-
fied. These snapshots can be mounted to recov-
er the older versions of the files that they con-
tain, or the live file system can be rolled back to
the time of the snapshot, discarding all modifi-
cations since the snapshot was taken. Snapshots
are read-only, but they can be used to create a
clone of a file system. A clone is a new live file
system that contains all the data from its parent
while consuming no additional space until it is
written to.

These features protect your data from the
usual problems: crashes, power failures, acciden-
tal deletion/overwriting, etc. However, what
about the cases where the problem is less obvi-
ous? Disks can suffer from silent corruption,
flipped bits, bad cables, and malfunctioning
controllers. To solve these problems, ZFS calcu-
lates a checksum for every block it writes and
stores that along with the metadata. When a
block is read, the checksum is again calculated
and then compared to the stored checksum; if
the two values do not match, something has
gone wrong. A traditional file system would
have no way of knowing there was a problem,

and would happily return the corrupted data.
ZFS, on the other hand, will attempt to recover
the data from the various forms of redundancy
supported by ZFS. When an error is encoun-
tered, ZFS increments the relevant counters dis-
played by the zpool status command. If redun-
dancy is available, ZFS will attempt to correct the
problem and continue normally; otherwise, it
will return an error instead of corrupted data.
The checksum algorithm defaults to fletcher, but
the SHA256 cryptographic hashing algorithm is
also available, offering a much smaller chance of
a hash collision in exchange for a performance
penalty.

Future-proof Storage
ZFS is designed to overcome the arbitrary limits
placed on previous file systems. For example, the
maximum size of a single file on an EXT3 file
system is 2^31 (2 TiB), while on EXT4 the limit is
2^44 (16 TiB), compared to 2^55 (32 PiB) on
UFS2, and 2^64 (16 EiB) on ZFS. EXT3 is limited
to 32,000 subdirectories, with EXT4 limited to
64,000, while ZFS can contain up to 2^48
entries (files and subdirectories) in each directo-
ry. The limits in ZFS are designed to be so large
that they will never be encountered, rather than
just being good enough for the next few years.

Owing to the fact that ZFS is both the volume
manager and the file system, it is possible to
add additional storage devices to a live system
and have the new space available on all the
existing file systems in that pool immediately.
Each top level device in a zpool is called a vdev,
which can be a simple disk or a RAID transform,
such as a mirror or RAID-Z array. ZFS file systems
(called datasets) each have access to the com-
bined free space of the entire pool. As blocks
are allocated, the free space available to the
pool (and file system) is decreased. This
approach avoids the common pitfall with exten-
sive partitioning where free space becomes frag-
mented across the partitions.

Doing It in Software Is Better?
Best practices dictate that ZFS be given unen-
cumbered access to the raw disk drives, rather
than a single logical volume created by a hard-
ware RAID controller. RAID controllers will gen-
erally mask errors and attempt to solve them
rather than reporting them to ZFS, leaving ZFS
unaware that there is a problem. If a hardware
RAID controller is used, it is recommended it be
set to IT "Target" or JBOD mode, rather than
providing RAID functionality. ZFS includes its

Jan/Feb 2014 33

•

•

own RAID functionality that is superior.
When creating a ZFS Pool (zpool) there are a

number of different redundancy levels to
choose from. Striping (RAID0, no redundancy),
Mirroring (RAID1 or better with n-way mirrors),
and RAID-Z. ZFS mirrors work very much the
same as traditional RAID1 (except you can place
3 or more drives into a single mirror set for

additional redundancy). However, RAID-Z has
some important differences compared to the
analogous traditional RAID configurations
(RAID5/6/50/60). Compared to RAID5, RAID-Z
offers better distribution of parity and elimi-
nates the “RAID5 write hole” in which the data
and parity information become inconsistent
after an unexpected restart. When data is writ-
ten to a traditional RAID5 array, the parity infor-
mation is not updated atomically, meaning that
the parity must be written separately after the
data has been updated. If something (like a
power failure) interrupts this process, then the
parity data is actually incorrect, and if the drive
containing the data fails, the parity will restore
incorrect data. ZFS provides 3 levels of RAID-Z
(Z1 through Z3) which provide increasing levels
of redundancy in exchange for decreasing levels
of usable storage. The number of drive failures
the array can withstand corresponds to the
name, so a RAID-Z2 array can withstand two
drives failing concurrently.

If you create multiple vdevs, for example,
two separate mirror sets, ZFS will stripe the data
across the two mirrors, providing increased per-
formance and IOPS. Creating a zpool of two or
more RAID-Z2 vdevs will effectively create a
RAID60 array, striping the data across the
redundant vdevs.

ZFS also supports the dataset property

copies, which controls the number of copies
of each block that is stored. The default is 1,
but by increasing this value, ZFS will store each
block multiple times, increasing the likelihood it
can be recovered in the event of a failure or
data corruption.

Faster Is Always Better!
In addition to providing very effective data
integrity checks, ZFS is also designed with per-
formance in mind. The first layer of performance
is provided by the Adaptive Replacement Cache
(ARC), which is resident entirely in RAM.
Traditional file systems use a Least Recently Used
(LRU) cache, which is simply a list of items in the
cache sorted by when each object was most
recently used. New items are added to the top
of the list, and once the cache is full, items from
the bottom of the list are evicted to make room
for more active objects. An ARC consists of four
lists—the Most Recently Used (MRU) and Most
Frequently Used (MFU) objects, plus a ghost list
for each. These ghost lists track recently evicted
objects to prevent them from being added back
to the cache. This increases the cache hit ratio
by avoiding objects that have a history of only
being used occasionally. Another advantage of
using both an MRU and MFU is that scanning
an entire file system would normally evict all
data from an MRU or LRU cache in favor of this
freshly accessed content. In the case of ZFS,
since there is also an MFU that only tracks the
most frequently used objects, the cache of the
most commonly accessed blocks remains. The
ARC can detect memory pressure (when anoth-
er application needs memory)
and will free some of the memory reserved for
the ARC. On FreeBSD, the ARC defaults to a
maximum of all RAM less 1 GB, but can be
restricted using the vfs.zfs.arc_max loader
tunable.

The ARC can optionally be augmented by a
Level 2 ARC (L2ARC). This is one or more SSDs
that are used as a read cache. When the ARC is
full, other commonly used objects are written to
the L2ARC, where they can be more quickly read
back than from the main storage pool. The rate
at which data is added to the cache devices is
limited to prevent prematurely wearing out the
SSD with too many writes. Writing to the L2ARC
is limited by vfs.zfs.l2arc_write_max,
except for during the “Turbo Warmup Phase”;
until the L2ARC is full (the first block has been
evicted to make room for something new), the
write limit is increased by the value of

34 FreeBSD Journal

POOLS
and adding a device to an existing pool,
ZFS will perform a whole-device TRIM,
erasing all blocks on the device to en-
sure optimum starting performance.

•

T H E F U T U R E O F S T O R A G E

WHEN INITIALIZING NEW

and adding a device to an existing pool,
ZFS will perform a whole-device TRIM,
erasing all blocks on the device to en-
sure optimum starting performance.

vfs.zfs.l2arc_write_boost. OpenZFS also
features L2ARC compression controlled by the
secondarycachecompress dataset property.
This increases the effective size of the L2ARC by
the compression ratio, but also increases read
performance as data is read as quickly as possi-
ble but then decompressed, resulting in an even
higher effective read speed. L2ARC compression
only uses the LZ4 algorithm because of its
extremely high decompression performance.

Fine-Grained Control
A great deal of the power of ZFS comes from
the fact that each dataset has a set of properties
that control how it behaves, and are inherited by
its children. A common best practice is to set the
atime property (which tracks the last access
time for each file) to "off". This prevents having
to write an update to the metadata of a file
each time it is accessed. Another powerful fea-
ture of ZFS is transparent compression. It can be
enabled and tuned per dataset, so one can com-
press /usr/src and /usr/ports but disable compres-
sion for /usr/ports/distfiles. OpenZFS includes a
selection of different compression algorithms
including: LZJB (modest compression, modest
CPU usage), GZIP1-9 (better compression, but
more CPU usage, adjustable), ZLE (compresses
runs of 0s, useful in specific cases), and LZ4
(added in v5000, greater compression and less
CPU usage than LZJB). LZ4 is a new BSD-licensed
high-performance, multi-core scalable compres-
sion algorithm. In addition to better compression
in less time, it also features extremely fast
decompression rates. Compared to the default
LZJB compression algorithm used by ZFS, LZ4 is
50% faster when compressing compressible data
and over three times faster when attempting to
compress incompressible data. The performance
on incompressible data is a large improvement;
this comes from an “early abort” feature. If ZFS
detects that the compression savings is less than
12.5%, then compression is aborted and the
block is written uncompressed data, but once
decompressed, provides a much higher effective
throughput. In addition, decompression is
approximately 80% faster; on a modern CPU, LZ4
is capable of compression at 500 MB/s and
decompression at 1500 MB/s per CPU core. These
numbers mean that for some workloads, com-
pression will actually give increased perform-
ance—even with the CPU usage penalty—
because data can be read from the disks at the
same speed as uncompressed data, but then once
decompressed, provides a much higher effective

throughput. This also means it is now possible to
use dataset compression on file systems that are
storing databases, without a heavy latency penal-
ty. LZ4 decompression at 1.5 GB/s on 8k blocks
means the additional latency is only 5 microsec-
onds, which is an order of magnitude faster than
even the fastest SSDs currently available.

ZFS also provides very fast and accurate
dataset, user and group space accounting in
addition to quotas and space-reservations. This
gives the administrator fine grained control over
how space is allocated and allows critical file sys-
tems to reserve space to ensure other file sys-
tems do not take all of the free space.

On top of all of this, ZFS also features a full
suite of delegation features. Delegating various
administrative functions such as quota control,
snapshotting, replication, ACL management, and
control over a dataset’s ZFS properties can
increase security and flexibility and decrease an
administrator’s workload. Using these features, it
is possible to take consistent backups based on
snapshots without root privileges. An administra-
tor could also choose to use a separate dataset
for each user’s home directory, and delegate
control over snapshot creation and compression
settings to that user.

Replication—
Redundancy Beyond the Node
ZFS also features a powerful replication system.
Using the zfs send and zfs receive commands it
is possible to send a dataset (and optionally its
children) to another dataset, another pool, or
another system entirely. ZFS replication also sup-
ports incremental sends, sending only the blocks
that have changed between a pair of snapshots.
OpenZFS includes enhancements to this feature
that provide an estimate of how much data will
need to be sent, as well as feedback while data
is being transferred. This is the basis of PCBSD’s
Life Preserver feature. A planned feature for the
future will also allow resumption of interrupted
ZFS send/receive operations.

Harnessing the Power of
Solid State Drives
In addition to the L2ARC read-cache discussed
earlier, ZFS supports optional log devices, also
known as ZFS Intent Log (ZIL). Some workloads,
especially databases, require an assurance that
the data they have written to disk has actually
reached “stable storage.” These are called syn-
chronous writes, because the system call does
not return until the data has been safely written

Jan/Feb 2014 35

•

36 FreeBSD Journal

to the disk. This additional safety traditionally
comes at the cost of performance, but with
ZFS it doesn’t have to. The ZIL accelerates syn-
chronous transactions by using storage devices
(such as SSDs) that are faster and have less
latency compared to those used for the main
pool. When data is being written and the
application requests a guarantee that the data
has been safely stored, the data is written to
the faster ZIL storage, and then later flushed
out to the regular disks, greatly reducing the
latency of synchronous writes. In the event of
a system crash or power loss, when the ZFS file
system is mounted again, the incomplete
transactions from the ZIL are replayed, ensur-
ing all of the data is safely in place in the main
storage pool. Log devices can be mirrored, but
RAID-Z is not supported. When specifying mul-
tiple log devices, writes will be load balanced
across all devices, further increasing perform-

ance. The ZIL is only used for synchronous
writes, so will not increase the performance of
(nor be busied by) asynchronous workloads.

OpenZFS has also gained TRIM support. Solid
State Disks (SSDs) work a bit differently than
traditional spinning disks. Due to the way that
flash cells wear out over time, SSD’s Flash
Translation Layer (FTL)—which makes the SSD
appear to the system like a typical spinning
disk—often moves data to different physical
locations in order to wear the cells evenly, and
to work around worn-out cells. In order to do
this effectively, the SSD’s FTL needs to know
when a block has been freed (the data stored
on it can be overwritten). Without information
as to which blocks are no longer in use, the SSD

must assume that any block that has ever been
written is still in use, and this leads to fragmen-
tation and greatly diminished performance.

When initializing new pools and adding a
device to an existing pool, ZFS will perform a
whole-device TRIM, erasing all blocks on the
device to ensure optimum starting perform-
ance. If the device is brand new or has previ-
ously been erased, setting the
vfs.zfs.vdev.trim_on_init sysctl to 0
will skip this step. Statistics about TRIM opera-
tions are exposed by the
kstat.zfs.misc.zio_trim sysctl. In
order to avoid excessive TRIM operations and
increasing wear on the SSD, ZFS queues the
TRIM command when a block is freed, but
waits (by default) 64 transaction groups before
sending the command to the drive. If a block is
reused within that time, it is removed from the
TRIM list. The L2ARC also supports TRIM, but
based on a time limit instead of number of
transaction groups.

OpenZFS—
Where Is It Going Next?
The recently founded OpenZFS project
(open-zfs.org) was created with the expressed
goals of raising awareness about open source
ZFS, encouraging open communication
between the various implementations and ven-
dors, and ensuring consistent reliability, func-
tionality, and performance among all distribu-
tions of ZFS. The project also has a number of
ideas for future improvements to ZFS, includ-
ing: resumable send/receive, ZFS channel pro-
grams to allow multiple operations to be com-
plete atomically, device removal, unified ashift
handling (for 4k sector “advanced format”
drives), increase maximum record size from
128KB to 1MB (preferably in a way compatible
with Oracle ZFS v32), platform agnostic
encryption, and improvements to dedupli-
cation. •

Allan Jude is VP of operations at ScaleEngine
Inc., a global HTTP and Video Streaming
Content Distribution Network, where he
makes extensive use of ZFS on FreeBSD. He is
also the on-air host of the video podcasts
“BSD Now” with Kris Moore, and “TechSNAP”
on JupiterBroadcasting.com. Previously he
taught FreeBSD and NetBSD at Mohawk
College in Hamilton, Canada, and has 12
years of BSD unix sysadmin experience.

T H E F U T U R E O F S T O R A G E

•

Open ZFS project (open-zfs.org)
was created with the expressed
goals of raising awareness about
open source ZFS, encouraging
open communication
between the various implementa-
tions and vendors, and ensuring
consistent reliability, functionality,
and performance among all dis-
tributions of ZFS.

