
Since its very early days PC-BSD has used a unique
form of package management, known as PBI or

20 FreeBSD Journal

THE ONGOING
EVOLUTION OF THE

PUSH BUTTON INSTALLER

BY KRIS MOORE

PBI Format

From 1.x to 11.x

While this PBI format has changed and
evolved with each major release of PC-

BSD, the basic concept and principles have
remained the same: to provide a way for appli-
cations to be installed on a system, in a self-
contained manner, without introducing messy
dependency resolution issues. In principle, this
means that a user can safely upgrade or down-
grade an application, such as Firefox, without
having to worry about changes being made to
the packages which make up the rest of the
system, such as X, GTK, KDE, and others.

Figure 1 provides a simplified version of what
a typical dependency-driven package system
can look like. This is the model most common
to both FreeBSD and Linux systems. While it has
some benefits, such as reduced disk space, it
also introduces a large element of complexity
for any updating system to cope with. When a
user wants to initiate an upgrade of a package,
often it requires the package management sys-
tem to resolve the upgrade of a tangled web of
dependencies, which could easily touch hun-
dreds of packages in a typical desktop applica-
tion. In the example of Firefox, this may leave a
new user perplexed as to why bits of seemingly
“unrelated” packages have to be changed,
such as GTK, Gnome, and others. Assuming the
upgrade of all the packages is done properly,
we are still left with another potential problem,
that of new bugs or regressions. While an expe-
rienced computing user may be able to find a
workaround to these problems, a more casual
user will be left wondering why a simple
update to their web-browser means that some

else in their desktop stopped working.
Figure 2 shows a simplified version of how

the PBI system interacts with the other software
installed on the system. In this case, each appli-
cation has been distributed as a “bundle,”
which is installed into its own directory, such as
/usr/pbi/firefox, without affecting the existing
package layout on the system. This makes the
process of upgrading an application as simple
as updating the contents of the bundle, either
as a binary differential update or a complete
bundle replacement. By eliminating the reliance
on dependencies, the user is now able to add,
remove, and update applications at will, know-
ing that at worst, only that particular applica-
tion will be affected.

In PC-BSD, moving applications to this model
has greatly improved system reliability and con-
sistency. However, it has presented a number of
technical hurdles to overcome. The first hurdle
was dealing with the system bloat that comes
with having many copies of the same files
installed in different PBI bundles. In PC-BSD 9,
this was addressed with the implementation of
a “hash” directory. This directory is created and
managed by a PBI daemon, which tracks shared
binaries and libraries between PBI bundles.

In Figure 3, two PBI bundles both include an
identical copy of libfoo.so.1. In this case, the
PBI daemon moves the library into the hash-
directory, with the file’s checksum attached. It
then creates a hard-link of the file back into
each PBI bundle.

During the upgrade of a PBI bundle, the dae-
mon again tracks the bundle’s shared binaries

March/April 2014 21

B a s e S y s t e m B a s e S y s t e m
Fig. 1. A Typical Dependency-driven Package System. Fig. 2. PBI Application Bundles.

22 FreeBSD Journal

•

and libraries. As seen in Figure 4, when a differ-
ent version of an existing library is detected, the
hash-directory is populated with a copy of the
new library, which is again hard-linked back into
the existing PBI bundle. The PBI daemon contin-
ues to monitor this directory, and when a file’s
hard-link counter drops to one instance, it is
removed.

For the recently released PC-BSD 10.0, the PBI
system has again undergone some refinement.
For all previous editions of PBIs, applications were
specially compiled from the ports tree using a
custom LOCALBASE setting. This was done in
order to force applications and libraries to behave
in a self-contained manner, by having them look
for their relevant data in the /usr/pbi/<appname>
directory instead of the default system
“/usr/local” directory. While this provided a work-
ing solution to self-containment, it presented
some unique challenges. First, it exposed a num-
ber of bugs in ports and applications which
expected their data to live in the system directo-
ries. Fixing these issues could range from simple
to complex and proved to be very time consum-
ing. Second, since packages were compiled with
a custom LOCALBASE, each PBI needed to be
compiled from scratch. This meant builders had
to spend many cycles re-compiling the same
libraries just to get some different location vari-
ables linked into the resulting binaries, libraries,
and configuration files.

During the 9.x life-cycle, a number of
enhancements were introduced to ease this
building burden, such as ccache support, pack-
age caching, and more. However, going into the
10.0 release process we knew that for our PBI
repositories to scale in size, we would have to
fundamentally fix this problem. With the new

pkgng and poudriere utili-
ties making it easy to build
the entire ports tree from
scratch, we began looking
at ways in which we could
build PBIs from a single
pkgng repository, but still
keep the “self-contained”
principles intact. The idea
of being able to simply
assemble a PBI from pack-
ages vs source building had
the potential of reducing
the build time for each PBI
from hours down to a few
minutes. However, this still
left us with the run-time
issues to solve. We experi-

mented with many different options from using
jails to running string replacement on binaries,
but none of them proved a viable option. When
looking into the idea of using jails, I thought: If
jails can be used to virtualize an entire FreeBSD
system, would it be possible to do some sort of
“jail-lite,” which only virtualizes the contents of
“/usr/local,” which is where our packages live? I
had also seen several jail implementations that
used some tricks with nullfs mounts to share a
single FreeBSD world between multiple jails.

These ideas all came together when I began
playing with the jailme utility in the ports tree.
Instead of using calls to execute applications
inside a jail, I modified the utility to do some
nullfs mounting, replaced the calls to the jail with
chroot, and created a “virtual” /usr/local space
for a PBI to execute. And thus the idea of “PBI
containers” was born. This immediately granted
us the benefits that we sought: the ability to use
a single set of packages, compiled with the stan-
dard /usr/local LOCABASE for assembling any
number of PBI files. Additionally, it greatly
reduces the complexity required for running
applications, since we don’t have to “force”
applications to only load libraries from their own
/usr/pbi directory. When the PBI is executed, it
will only have access to its own files located in
/usr/local.

This virtual /usr/local is accomplished is by
using a wrapper binary in the front of the PBIs
target executables. At launch of a target PBI, this
wrapper will first check if the “virtual” container
environment has been created. If not, it will pro-
ceed to perform some nullfs mounts, creating a
replica of the running system in
/usr/pbi/.mounts/<app>. Then the PBIs own
/usr/local replacement will be mounted into this

Fig. 3. Identical Files Linked to the
Hash-directory.

Fig. 4. Installing or Updating a Bundle with
New Libraries.

directory, replacing the systems version. With
the virtual container now created, the wrapper
binary will then re-create the containers ldconfig
hints files in /var/run, preparing the new
/usr/local directory for execution. Lastly the
wrapper will chroot into the environment and
execute the target application as called. This
entire process can be done in usually a second
or less, and only needs to be done the first time
a PBI is run, making subsequent execution near-
ly instantaneous. The container environment
stays active until the system is rebooted or the
PBI is removed.

For applications that need to run commands
outside the container, some callback mecha-
nisms were added to allow running other PBIs
or commands in the system’s /usr/local space.
These are mapped to the xdg-open and open-
with commands and are typically used to open
a file with user-specified application. For exam-
ple, this would be used in the case of clicking a
URL in some mail application and having that
URL be passed along to the users default web
browser.

With the runtime problems now solved, we
went back and began to look at the benefits to
the build infrastructure that this change bought
us. The PC-BSD PBI repository for the 9.x series
had grown to well over a thousand PBIs, and
doing a complete rebuild from scratch easily
takes 3-4 weeks on a modern server. This
change reduced the build time of the same set
of applications to only 48 hours!

With the release of PC-BSD 10.0 now com-
plete, thought is already being given to the next
stage of PBI evolution for version 11.0 or possi-
bly 12.0. With the library de-duplication issue
solved, and now the implementation of PBI con-
tainers, next on the roadmap is finding ways to
reduce the download size of PBIs. Since PBIs are
entirely self-contained, the total download size
for each PBI is very large, often with the same
files and libraries contained in each PBI file.
While the de-duplication which occurs post-
install fixes this issue for installed applications,
we also want to find ways to reduce the total
download size of a PBI file. This not only will
save much downloading time for end-users, but
also can reduce the total PBI storage footprint
on our servers.

One possible solution is to make the PBI sim-
ply a “meta-file.” This file would provide desk-
top and mime information, as well as a list of
the packages that comprise the PBI. During the
installation, this package list can be parsed and
used as a blueprint for reassembling the PBI into

a container, using cached pkgng packages.
Since many of the packages used by PBIs are
identical, this allows us to only fetch the missing
packages needed for a specific PBI to be
installed. Once the packages are all cached on
disk, the installer can then assemble them back
into an installed PBI. This method would greatly
shrink the data being sent over the wire, but
also opens up interesting ideas such as making
PBIs customizable, by adjusting the particular
packages that are reassembled into the contain-
er. This can all be done while preserving the
integrity of the main system packages, which
comprise a desktop or server installation, and
other PBI containers. For users who still want
the “offline” experience of copying a single PBI
file to USB and installing it on a non-connected
system, we can provide mechanisms to assem-
ble the various meta-data and packages into a
single file for installation.

While the PBI format has evolved greatly over
the years, we are confident that it will continue
to improve with each major release. All the
while staying true to the vision of making the
installation and upgrade of applications as sim-
ple and risk-free as possible. Users who wish to
participate in this discussion and development
are encouraged to get in touch with us on the
PC-BSD developers mailing list.•
Kris Moore is the founder and lead devel-
oper of the PC-BSD project. He is also the co-
host of the popular BSDNow video podcast.
When not at home programming, he travels
around the world giving talks and tutorials
on various BSD-related topics at Linux and
BSD conferences alike. He currently lives in
Tennesee (USA) with his wife and five chil-
dren and enjoys playing bass guitar and
video gaming in his (very limited) spare
time.

March/April 2014 23

http://wiki.pcbsd.org/index.php/PBI_Manager/10.0

http://wiki.pcbsd.org/index.php/PBI9_Format

http://www.bsdcan.org/2008/schedule/events/81.en.html

http://bsdtalk.blogspot.com/2008/02/bsdtalk141-pbi4-
with-kris-moore.html

http://2011.eurobsdcon.org/talks.html#moore

•Further Reading on the PBI Format:

