14

Stop using portmaster, portupgrade and ports
on your servers and switch to packages.

Poudriere

BY BRYAN DREWERY

Setting up your own pack-
age builds with Poudriere
takes only a few minutes
and will save you a lot of
time in the future.

Since November 2013, FreeBSD has provided
official packages for Pkg, formerly known as
pkgng. The 10 release also brought the first
signed packages. The project uses Poudriere for
package building.

FreeBSD Journal

Why Use Packages

If you are maintaining more
than one FreeBSD system and
not using packages already,
you should. | maintain only
20 servers, but building ports
on each system took a lot of
my time and wasted

resources on production machines.

When building ports on multiple servers, it is
very easy to get their options or versions out of
sync. By building packages once on one system, |
lessened the load on my systems, lessened the
amount of work | had to do and made all my
systems consistent. Instead of dealing with the
same failure on each system, | only need to han-
dle it on the build system.

Until Pkg was available, | never really consid-
ered using packages. The old style pkg_install
packages were fine for initial system installation,
but there was no built-in way to upgrade, except
to remove all and install a new set. You had to
use a tool such as portmaster or portupgrade
and have an INDEX or a ports tree checked out.
These tools may appear to do a fine job with
package upgrades, but they miss a lot and create
extra work. Often when ports are updated, the
PORTREVISION is not bumped to force a package
rebuild. This sometimes is forgotten or at other
times is not practical, since thousands of ports
would need to be bumped to chase a dependen-
cy update. Pkg handles this situation better than

the old system. Pkg can also detect when the
selected options for installed packages have
changed from the available remote packages
and will reinstall them automatically. The old
tools would require recursively reinstalling pack-
ages sometimes and not others. There was too
much manual work involved with the old pack-
age system. The goal of Pkg is to have a built-in
upgrade process that removes manual interven-
tion. There is still some work to do on removing
some of the manual intervention, but it is
already far better than the old system.

Custom Package Options

Why would you need to deviate from the official
packages? The ports framework provides
options support for ports to change build-time
configuration. Not all applications support run-
time configuration. Some applications must be
compiled differently depending on which fea-
tures are enabled. Others have options simply to
lessen the amount of features and dependencies
in the default port. For server administrators,
this can quickly lead to finding that some of the
default packages do not meet their require-
ments. One common example is that PHP comes
in CGl mode by default without any support for
apache+mod_php or the more flexible PHP-FPM.
Another common issue with the default pack-
ages is that they come with X11 support which
may be undesirable on non-desktop environ-
ments. Perhaps you have custom ports or cus-
tom patches for some ports. By building your
own packages you regain control over which
options packages are built with and how often
updates are available.

Some other reasons to build your own pack-
ages are when you are dealing with restrictive

licenses for which the FreeBSD project is unable
to ship packages or if your system is highly cus-
tomized and not ABI compatible with FreeBSD.

There are a few ways to get custom pack-
ages. Pkg supports using multiple repositories. It
can be set up to use the official FreeBSD reposi-
tory as a primary and a custom one as a second-
ary. Pkg is not limited by the number of reposi-
tories it can track and they can be reordered for
priority. The problem with multiple repositories is
that it can currently be difficult to maintain.
When Pkg detects that an installed package has
different options or dependencies from a reposi-
tory it is tracking, the package will be reinstalled
from potentially any remote version. You can
either lock the package during upgrades with
pkg lock PKGNAME and pkg unlock
PKGNAME or bind it to a specific repository with
pkg annotate -A PKGNAME repository
REPONAME. There is also the subtle problem of
keeping the ports tree for your custom reposito-
ry in sync with the FreeBSD packages. Since
packages are built from a ports tree snapshot
taken once a week, if your custom repository
does not match it may lead to conflicts. It is
much simpler to just build an entire package set
of just what you need with the options that you
want. On your systems you would only track
your one repository and not include the FreeBSD
one. This also has the benefit of using your own
infrastructure for distributing packages which
can speed up upgrades substantially.

Building Packages

For the longest time Tinderbox was the popular
go-to tool for building packages. Other people
would just install all ports on one system and
then create packages from that system and copy
them to other systems. This method is not rec-
ommended because the packages are created in
an unclean environment that is constantly grow-
ing larger and more polluted. Even using port-
master with ports today and creating Pkg pack-
ages from those for distribution is not recom-
mended for the same reasons. It is better to use
a system designed for creating package sets.
Poudriere (roughly pronounced poo-dree-year,
French for “powder keg”) was written as a
faster and simpler replacement for Tinderbox. It
was written by the Pkg author Baptiste
Daroussin and is now mostly maintained by me
along with Baptiste and some other contribu-
tors. It has quickly become the de-facto FreeBSD
port testing and package building tool. It is the

March/April 2014

15

Poudriere

official build cluster tool and is also used by the
FreeBSD Ports project for testing sweeping
patches in what are called “exp-runs”. It is writ-
ten in POSIX shell and is slowly being moved to
C components. Unlike Tinderbox, it has no
dependencies and does not require a database.
It has been greatly optimized to be highly paral-
lel in all operations. It uses jails to build ports in
sandboxed environments in very strict condi-
tions. Jail creation is done once with a simple
command. During builds, the jail is cloned auto-
matically for each CPU being used to give ports
a clean place to build. Builds can occur on UFS,
ZFS or the TMPFS file systems. UFS is high /0O,
low RAM, slow build and TMPFS is low I/O, high
RAM and very fast build. It is also configurable
such that only some parts of the build use
TMPES while others use UFS/ZFS to allow some
compromise on lower memory machines. An
amd64 host can also build i386 packages with
no extra effort. Packages can be built for the
current host version or older. For example, if the
. host machine is 9.2, it can build 9.2, 9.1 and
8.3 package sets.

Poudriere does incremental builds by default
to only rebuild what is needed. The incremental
build checks for changed options, missing
dependencies, changed dependencies, new ver-
sions, and changed pkgnames. If any of those
changed it will rebuild that port. This also caus-
es anything depending on that port to be
rebuilt. This is sometimes overkill, but ensures
that no port change is missed in package cre-
ation. There is also built-in ccache support
which can help port rebuilding time when
dependencies change. Build times of package
sets vary, but on a system with multiple CPU
and enough RAM, a few hundred ports can typ-
ically build in an hour or two.

Poudriere has a read-only, real-time web

Builders Built ports

tatus Show 1

"
“ | Failed ports

Show 10 v entries Search

Poudriere 3.1 Web Interface Preview

16 | FreeBSD Journal

interface that allows monitoring the status of
builds. This interface does not require any serv-
er-side CGl or scripting support, as Poudriere
just writes out a status file in JSON and then
web interface uses it. It is not as nice as the
Tinderbox interface, but there are plans to
improve it more in the future. The 3.1 version
has been incrementally improved to be more
responsive and allow searching and sorting each
sub-list of packages. See screen shot.

Poudriere also has a feature called a “set”.
This allows having multiple saved options,
make.conf files and resulting package sets for
each named “set”. This removes the need to
have multiple jails for the same target
version/architecture. For example, this can be
used to create a PHP 5.3 package set named
“php53” and a PHP 5.5 package set named
“php55” using one jail on the build system.
When building the set would be specified with
“-z setname”, i.e. "bulk —a php53 —j
91lamd64” would produce packages in
/usr/local/poudriere/data/
packages/91lamd64-default-php53. The
“default” refers to the ports tree, which can
also be changed with the “-p” option.

The upcoming Poudriere 3.1 release also
brings some interesting new features. One of
the major ones is named
ATOMIC_PACKAGE_REPOSITORY. It prevents the
repository from being modified until a build is
completed. Currently in 3.0 the repository has
packages deleted at startup and packages being
modified during build, thus disallowing serving
it directly over http. This is enabled by default. It
works by hard-link copying the package directo-
ry into a .building directory during startup, then
when the build completes the .building directory
is renamed to a .real_TIMESTAMP directory and
the top-level .latest symlink in the repository is
updated to point to the new build. There are
still potential problems with changing the repos-
itory during a pkg upgrade job, but the window
for problems is far smaller than without this
(Box 1).

This feature also allows doing dry-runs with
bulk to see what would be done by using
bulk —n.

Atomic package repository also allows keep-
ing old package sets. This is not enabled by
default but can be enabled by setting
KEEP_OLD_PACKAGES and KEEP_OLD_PACK-
AGES_COUNT. By default, 5 sets are kept. With
this you could rollback a system by changing the
.latest symlink to an old set and then running
pkg upgrade —f on a server to force it to

/usr/packages/exp-91amd64-commit-test # Is -al

total 13

drwxr-xr-x 7 root wheel 12 Mar 2 01:59 ./

drwxr-x—x 26 root wheel 32 Mar 2 01:13 ../

[rwxr-xr-x 1 root wheel 16 Mar 2 01:59 .latest@ -> .real_1393747164

drwxr-xr-x 4 root wheel 7 Mar 1 16:59 .real_1393714735/

drwxr-xr-x 4 root wheel 7 Mar 2 00:40 .real_1393742366/ Box 1.
drwxr-xr-x 4 root wheel 7 Mar 2 00:58 .real_1393743542/ Atomic pafkage
drwxr-xr-x 4 root wheel 7 Mar 2 01:05 .real_1393743901/ repository fayout
drwxr-xr-x 4 root wheel 7 Mar 2 02:00 .real_1393747164/

Irwxr-xr-x 1 root wheel 11 Nov 19 17:20 All@ -> .latest/All

Irwxr-xr-x 1 root wheel 14 Nov 19 17:20 Latest@ -> .latest/Latest

[rwxr-xr-x 1 root wheel 19 Nov 19 17:20 digests.txz@ -> .latest/digests.txz

Irwxr-xr-x 1 root wheel 23 Nov 19 17:20 packagesite.txz@ -> .latest/packagesite.txz

reinstall all packages from the remote repository. and even arguments to specific users and

This would downgrade all to the old set. groups. More improvements, such as daemon
Another upcoming feature for 3.1 is named privilege separation, are planned for 3.2/4.0.

poudriered. It will allow non-root usage of Setup and usage of poudriere is simple and

poudriere through a socket to a root daemon. fast. Install poudriere, create a jail, checkout a

This will allow queueing jobs as well as queueing ports tree, create a file with a list of ports,

a job for all jails. It is configurable in a similar optionally create a private/public keypair for a

way as sudo to be able to restrict subcommands

$ pkg install ports-mgmt/poudriere

$ cp /usr/local/etc/poudriere.conf.sample /usr/local/etc/poudriere.conf
Modify configuration.

$ vim /usr/local/etc/poudriere.conf

Create a ports tree in /usr/local/poudriere/ports/default

$ poudriere ports —c —m svn+https

Create a jail from a snapshot
$ poudriere —j 10amd64 —v 10.0-RELEASE —a amd64
Create a head jail from src

$ poudriere —j head-amd64 —v head —a amd64 —m svn+https Box 2
OoX Z.

Typical

Create a list of port origins (cat/port), 1 per line. Poudriere setup

$ vim /usr/local/etc/poudriere.d/ports.list

Create a public/private keypair for the repository
$ cd /etc/ssl

$ openssl genrsa -out repo.key 2048

$ chmod 0400 repo.key

$ openssl rsa -in repo.key -out repo.pub —pubout
Configure poudriere to use your public key

$ echo “PKG_REPO_SIGNING_KEY=/etc/ssl/repo.key” >> /usr/local/etc/poudriere.conf

Create a make.conf
$ echo “WITH_PKGNG=yes" >> /usr/local/etc/poudriere.d/make.conf

Configure options for the build
$ poudriere options —f /usr/local/etc/poudriere.d/ports.list

Build packages
$ poudriere bulk —j 91amd64 —f /usr/local/etc/poudriere.d/ports.list

March/April 2014

17

Poudriere

signed repository and then build! (Box 2).

If you need to build multiple sets, then you
should use the “-z" flag when using
“options”, and “bulk” commands, and also
setup a SET-make.conf in /usr/local/
etc/poudriere.d with any set-specific con-
figuration.

The official Poudriere site has a guide for
creating and maintaining repositories. The
manual page is also online here.

There is a guide for using Jenkins to do
scheduled builds of packages which is docu-
mented well in a 3 part series here.

How FreeBSD Builds Packages

The FreeBSD project used to build packages
only for releases and occasionally for the STA-
BLE branches. The old package builders used a
distributed system named Portbuild. It would
use a large cluster of smaller 2GB-4GB
machines to build packages. This was error-
prone and slow, mostly due to the older
machines. A full build could still take a week.
Today packages are built using single large
machines using Poudriere. The FreeBSD
Foundation was nice enough to purchase sev-
eral 24-32 CPU 96GB machines to replace the
old cluster. Using the new systems with
Poudriere, the entire ports tree can be built
from scratch in about 16 hours on one
machine.

Packages are built for the oldest release of
each branch. These packages are supposed to
be ABI/KBI compatible with all future releases
on those branches as well as the STABLE
branch for that release. This means that pack-
ages built for 8.3 will work on 8.4 but are not
guaranteed to work on 9.x. For official
FreeBSD package builds, every Tuesday night a
snapshot of the ports tree is made and pack-
ages begin building. Currently packages are
built from 8.3, 9.1, 10.0, and head for i386
and amd64. The quarterly ports branch is also
built for 10.0 on both i386 and amd64. This
adds up to 10 separate package sets that must
be built each week. We split these into two
separate servers, one for i386 and the other
for amdé4. Not all 24,000 ports are built every
week for every set, since Poudriere is smart
enough to only build what needs to be rebuilt.

It takes just a few days for all sets to be
built. After each individual package set is
built, its repository is generated and signed
by our signing server. An example of how
we sign packages is in the pkg-repo.8

18 | FreeBSD Journal

manual page. Then the packages are up-
loaded, using rsync, to our content delivery
network for public consumption.

Meta Packages

For managing my servers | use meta-packages.
These are packages that only depend on other
packages and do not install any files them-
selves. They can be created from a port that
does no actual building. By installing meta-
packages onto your servers, you guarantee
that each server will have the same packages
installed as long as they each install only the
few meta-packages you create. Using meta-
packages also makes removing unneeded
packages much simpler. Pkg has a feature that
tracks which packages have specifically
requested to be installed and which were
pulled in automatically as dependencies. If you
were to type pkg install for all packages
on a system, then pkg autoremove would
never remove anything. If instead you were to
only install the one meta-package and it pulled
in 100 dependencies, then in the future
updated the meta-package to no longer
require some other package, pkg autore
move would properly detect and remove that
package.

| take this a step further and have role-based
meta-packages. For example, | have a base
meta-package that contains all packages that all
my servers need. This would be things such as
the configuration management tool. | then have
meta-packages for each type of server that
depend on only what it needs and the base
meta-package. For example, my DNS server uses
the dns-server meta-package that depends on
bind and some other DNS tools and the base
meta-package. My web application jails all have
a web-server meta-package that depends on
PHP, nginx and the base meta-package. This
simplifies management on the servers, as only a
handful of packages need to be explicitly
installed and monitored. My method is to use a
ports tree overlay to create my meta-packages,
but you could also just
create the packages directly by using the pkg
manifest format. For the ports tree overlay, | just
rsync my git-tracked tree over the top of
an SVN checkout of ports. For Poudriere only
the meta-packages need to be specified to build
and it will then build all needed dependencies
as well. | have a guide on my blog for manag-
ing role based servers with meta-packages.

Deployment

The official FreeBSD package URL uses an SRV
DNS record to advertise which mirrors are avail-
able, but otherwise is just plain HTTP. If your
network is completely internal there is not
much to do for deployment. All that is needed
is an internal FTP or HTTP server to serve up
the package repository. The servers | host are
spread out all over the world and are not in
one network. At first | tried using just one
HTTP server for serving the packages, but
quickly found that updating all of them at
once would severely slow everything down. If
you have a large pipe this may still be an
option. | ended up using Amazon S3 and have
had a much better experience. | wrote a bulk
hook for my builds using s3sync to upload the
packages. | host 5GB of package sets on there
and update servers weekly. This comes out to
just a few dollars or less a month for updating
my 20 servers.

To configure a server to use your repository,
create a /usr/local/etc/pkg/repos/
MYREPO. conf file, and also place your reposi-
tory public key in /usr/local/etc/
pkg/repos/MYREPO. pem (Box 3).

This configuration requires setup of ABI sym-
links in the repository. This is a one-time opera-
tion. It allows you to use the same repository
configuration on all servers without changing
which release and arch it uses. Pkg will change
the value of ABI when it fetches packages. It
should look something like this (Box 4).

As for keeping servers up-to-date, since | am a
Ports committer and also a Pkg developer, | like
to observe all upgrades that | can to find any
issues. I'm also just paranoid and like to make
sure upgrades go smoothly, so | manually run
pkg upgrade on my servers and don't use
an automated crontab for it. My systems have
a lot of applications built outside of ports, so |
must save shared libraries until those applica-
tions can be rebuilt. This is similar to what por-
tupgrade and portmaster with
the “-p” flag do. An example
of this can found on my
github. Manually running my
upgrade script is not a problem

total 19

Is -al /usr/local/poudriere/data/packages

drwxr-xr-x 7 root wheel 15 Jul 11 2013 ./

MYREPO: {

url: “http://url.to.your.repository/${ABI}",
enabled: true,

signature_type: “pubkey”,

pubkey: “/usr/local/etc/pkg/repos/MYREPO.pem”

Optionally disable the FreeBSD repo. Box 3.

FreeBSD: { Typical pkg
" repository

}enabled. false configuration

sionally. This usually only occurs anymore when
the origin of a package changes and requires
running pkg set -o old/origin:new/
origin. The most common case is when
something like Perl is updated. You can detect
this case and other cases of conflicting pack-
ages in a script by running pkg upgrade
—Fy which will list all conflicting packages in
the upgrade. The ports framework and Pkg
currently do not have a means to handle
replaced packages automatically, but eventually
will. These cases are still currently documented
in the /usr/ports/UPDATING file. You can
keep an eye on this file in ports svnweb.

Pkg discussion takes place on the freebsd-
pkg mailing list and on IRC in #pkgng on
Freenode. Poudriere discussion takes place on
IRC in #poudriere on Freenode. Feel free to stop
by with any questions or ideas you have. e

Bryan Drewery has managed shared host-
ing services with FreeBSD since 2004. He
joined the project in 2012 as a Ports com-
mitter, is a member of Portmgr and has
recently become a Src committer. He is
the current upstream maintainer of
Portupgrade, Portmaster, and a developer
on Pkg and Poudriere. In Portmgr, he helps
with the Ports framework, managing the
package build systems, package building
and testing ports patches on them.

Box 4.
ABI symlink
setup

drwxr-x—x 26 root wheel 32 Mar 2 01:13 ../
drwxr-xr-x 2 root wheel 2 Jul 8 2013 10amd64/
drwxr-xr-x 7 root wheel 39 Mar 2 10:05 83amd64/
drwxr-xr-x 7 root wheel 39 Mar 2 10:30 83i386/

for me since | only maintain a
handful of servers. However,
Pkg is supported by puppet,
salt and ansible. Do be warned

though that some manual Irwxr-xr-x 1 root wheel 7 Jul 8 2013 freebsd:10:x86:64@ -> 10amd64
intervention is still required Irwxr-xr-x 1 root wheel 6 Jan 26 2013 freebsd:8:x86:32@ -> 83i386
Irwxr-xr-x 1 root wheel 7 Jan 26 2013 freebsd:8:x86:64@ -> 83amd64

with package upgrades occa-

March/April 2014 |19

