
F

24 FreeBSD Journal

ortunately, CPU designers have added fea-
tures to their chips to enable developers and
administrators to better understand the per-
formance of software with a very small
amount of overhead. The Hardware
Performance Monitoring Counters,
hwpmc(4), driver and associated tools on
FreeBSD provide software developers—and
anyone else who is interested in system per-
formance—a way to better understand how
efficiently their software is utilizing the
underlying hardware, their applications and
the operating system itself. The hwpmc sub-
system takes advantage of hardware specific
registers set aside by the CPU designer pure-
ly for the purpose of understanding the run
time performance of the system.

It Was 20 Years Ago...
In early versions of BSD software, perform-
ance was measured using a software based
profiling system and an associated tool,
named gprof. The g stands for graph, as in
call graph. Software that was to be profiled
was compiled with a set of flags indicating
that the resulting program should have spe-
cial hooks to tell the operating system to

periodically collect performance information.
Once the program had been executed, this
profiling information was collated by the
gprof program and presented to the user.

A software based profiling system has
several problems. First, software profiling is
computationally expensive. Depending on
how often the profiler runs, it may introduce
an overhead penalty on the order of 10% to
20%. For a short program, the profiling can
easily outweigh the code being profiled,
resulting in measurements that are useless.
A second problem is that a software based
profiling solution changes the flow of the
resulting binary program, meaning that the
code being profiled is not a one to one rep-
resentation of the final software as it would
be shipped to a customer. While it is possi-
ble to ship profiled binaries to customers,
the overhead incurred in a profiled binary
would result in worse overall system per-
formance, which would be unacceptable.
The third problem presented by software
based profiling is that it is impossible for an
end user to measure the performance of
their system on their own. A customer with
a non-profiled binary application to run has

BY GEORGE NEVILLE-NEIL

Architecture and memory have
become more complex over the last
several years. This added complexity
has made it harder than ever to
understand software performance.

UNDERSTANDING APPLICATION
AND SYSTEM PERFORMANCE WITH

HWPMC(4)

no way of adding profiling to the binary to find
out if the program is a source of system ineffi-
ciency. Hardware based performance solutions
ameliorate some of these problems.

Hardware Based Performance
Monitoring Counters
As CPUs got to be more densely packed with
transistors, and as the feature sets of CPUs got
larger, it became possible for CPU designers to
include specific registers to count events relating
to system performance. At first the types and
numbers of events that could be counted were
small, with only a handful of events and one or
two counting registers. It was only possible to
count instructions that were executed or the
number of level one cache misses. On a modern
Intel CPU, hundreds of event types can be
counted, and there are enough counting regis-
ters to record 7 different events simultaneously.

When working with hardware based per-
formance monitoring counters there are a few
pieces of terminology to keep in
mind. An “event” is anything
that the chip can count for you,
such as the number of instruc-
tions retired, branch predictions
that were missed, cycles required
to fetch memory, etc. A counting
register is a place where an event can be
counted. Events can be recorded in two differ-
ent modes, and counted in two different
scopes. An event may be simply “counted” or
the CPU may be configured to interrupt the
operating system when a counter has hit a set
level, an event which the hwpmc(4) driver
records in its log for later analysis. A counted
event gives a raw number that tells the pro-
grammer how many of some event happened
over a particular unit of time. A sampled event
is more complicated than a counted event. In
event sampling, the system is programmed to
take a sample of the instruction pointer and
possibly the program’s call chain, whenever
some number of events has occurred. Sampling
allows the system to show where an event
occurred in the software, helping the program-
mer pinpoint the source of a performance
problem. Events can be counted and sampled
in one of two scopes. Process scope records
events only when the target program is cur-
rently executing. System scope records events
at all times and when coupled with sampling
mode will show the performance not only of
the program that is being tested, but of all pro-
grams in the system, including the operating

system itself. It is possible to count events in
either system or process mode as well as sam-
ple events in system or process mode.

Measuring Performance
with hwpmc
The easiest way to learn to use hwpmc in your
own programs is by trying with a few contrived
examples. The unixbench[cite] system of bench-
marks is a well-known, easy to understand, set
of programs that try to determine the speed of
both software and hardware. We will measure
the performance of several programs from
unixbench with the pmc tools in order to give
some clear examples.

Before working with the hwpmc(4) driver it
must be loaded into your kernel. To measure
system level performance you will also need
root privileges on the machine on which you
wish to use hwpmc. The default (GENERIC) ker-
nel does not have hwpmc loaded at boot time.
In order to load hwpmc issue the following

commands as root (Figure1).
When the hwpmc(4) driver is loaded it

reports the number, type and width of the
counting registers it finds on the CPU. The out-
put varies widely from processor to processor,
even within the same vendor family. In the
example shown above there are sixteen soft
registers, one time stamp counter, four pro-
grammed counters and three fixed counters.
Certain events can only be counted in certain
types of registers, and you will be given an
error if you try to count events in a register that
does not accept the event you are asking for.
For the most part you only need to know the
number of registers in each class, as the system
attempts to assign events correctly when you
ask for them. If a user tries to count four
events that are only possible in the fixed type
registers (IAF) then the tools will report an error
and exit without counting any events.

The types of events that can be counted are
listed with the pmccontrol -L command.
There are 194 possible events that can be
counted on this host, but don’t worry, we will
not go through all of them.

One of the first program measurements that
is typically made is the raw number of instruc-

March/April 2014 25

•

kldload hwpmc

hwpmc: SOFT/16/64/0x67<INT,USR,SYS,REA,WRI> TSC/1/64/0x20<REA>
IAP/4/48/0x3ff<INT,USR,SYS,EDG,THR,REA,WRI,INV,QUA,PRC>
IAF/3/48/0x67<INT,USR,SYS,REA,WRI>

Fig. 1

26 FreeBSD Journal

Examples
in this
article

were run on a
Lenovo

Thinkpad
X230 with a

Core i7
running at

2.9GHz.

tions that it executes in a particular amount of
time. The event, INSTR_RETIRED_ANY, counts
instructions executed. The term retired is used
because the end of executing an instruction is
called retiring in CPU parlance.

In order to count or sample events the

pmcstat command is used.
Figure 2 shows a simple, cumulative, count

of instruction’s retired when the hanoi bench-
mark is run for ten seconds. We need not con-
cern ourselves with the details of the hanoi
program at this point, but we will dig into it
more later. The first column is the number of
instructions that were retired during the entire
run of the program, the last number showing
the cumulative total of 27527655088. In the
ten seconds that the hanoi program was run-
ning it executed 1343590 loops, and this out-
put is from the hanoi program itself, it has
nothing to do with hwpmc.

For comparison, we ran the hanoi program
without the performance monitoring system.
Based on the number of loops that hanoi was
able to execute in ten seconds (Figure 3) we see
that hwpmc introduces less than 2% of overhead.

One common measure of code efficiency is
Cycles Per Instruction (CPI) which is derived by

counting both instructions retired and the num-
ber of cycles during a test run, and then divid-
ing the two results.

The command in Figure 4 counts instructions
retired and clock cycles simultaneously. Dividing
the clock cycles by the number of instructions
retired gets us a CPI of 0.44, which, according
to Intel’s optimization manuals, is an acceptable
value. Higher values of CPI, for instance those
greater than 1, indicate that instructions are
taking longer than they ought to. For a full dis-
cussion of CPI and general performance tuning
using Intel’s PMC events see:

(http://www.intel.com/content/dam/www/pu
blic/us/en/documents/manuals/64-ia-32-architec-
tures-optimization-manual.pdf)

Counting events gives an overall idea of the
efficiency of a complete program. To look more
deeply into where a piece of code is spending
its time we need to use sampling mode.

The command shown in Figure 5 uses the
instruction retired event from the previous
example, but switches to sampling mode, indi-
cated by the capital P command line switch,
and stores the resulting output in a log file in
/tmp/hanoi.log. Without the output option, the
entire log would be dumped to stdout, which
wouldn’t be very useful.

Once the event collection is complete we
analyze the log file with pmcstat to see what
functions were taking up the most instructions.

We process the collected log file in Figure 6
to produce a graph file. The output in the graph
file (hanoi.graph) shows the functions that took
up the largest percentage of events, starting
with the largest and proceeding to the smallest.

The output in Figure 7 shows that the mov()
routine, see the code in Listing X, takes up the
largest number of samples, whereas the main()
routine for the program had very few. The
result is what we’d expect from this program.
Output from pmcstat can be shown in another
way, as gprof(1) output pmcstat -R
/tmp/hanoi.log -g. (Figure 7).

Processing the same log with the -g argu-
ment creates a per-event directory,
INSTR_RETIRED_ANY/ which contains output
files for each program, library, and the kernel
that were in use when the samples were taken.

Processing the hanoi.gmon file gives the
output shown in Figure 8. Time, in this case, is
misleading. The numbers in the seconds
columns represent events counted, and not sec-
onds, but the output is convenient and brief to
read. We still see that the mov() routine is the
biggest consumer of events, taking up 99.8%

int main(argc, argv)
int argc;
char *argv[];
{
... (Intentionally Left Blank) ...

while(1) {
mov(disk,1,3);
iter++;
}

exit(0);
}

void mov(int n, int f, int t)
{

int o;
if(n == 1) {

num[f]—;
num[t]++;
return;

}
o = other(f,t);
mov(n-1,f,o);
mov(1,f,t);
mov(n-1,o,t);

}

UNDERSTANDING HWPMC(4)

X

pmcstat -C -p INSTR_RETIRED_ANY ./hanoi 10
p/INSTR_RETIRED_ANY

14201054051 1343590 loops
27527655088

./hanoi 10
1357889 loops

pmcstat -C -p INSTR_RETIRED_ANY -p CPU_CLK_UNHALTED_CORE ./hanoi 10
p/INSTR_RETIRED_ANY p/CPU_CLK_UNHALTED_CORE

13318387828 5962151280 1324620 loops

27139612697 11987228985

> pmcstat -R /tmp/hanoi.log -G /tmp/hanoi.graph

@ INSTR_RETIRED_ANY [365189 samples]

99.17% [362173] mov @
/usr/home/gnn/svn/headports/benchmarks/unixbench/work/unixbench-4.1.0/pgms/hanoi
99.61% [360744] mov
97.57% [351963] mov
90.90% [319928] mov
09.10% [32035] main

02.43% [8781] main
100.0% [8781] _start

00.39% [1429] main
100.0% [1429] _start

Fig. 2

Fig. 4

Fig. 3

Fig. 6

> ls
hanoi.gmon kernel.gmon libc.so.7.gmon
hwpmc.ko.gmon ld-elf.so.1.gmon
> gprof ../hanoi hanoi.gmon
granularity: each sample hit covers 4.00673 byte(s) for 0.00% of 362181.00 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
99.8 361564.31 361564.31 42245 8558.75 8558.75 mov [3]
0.0 361572.29 7.99 10210 0.78 35413.54 main [1]
0.0 361572.29 0.00 0 0.00% _start [2]

March/April 2014 27

Fig. 8

Fig. 7

> pmcstat -O /tmp/hanoi.log -P INSTR_RETIRED_ANY ./hanoi 10
1013645 loops

Fig. 5

Y

28 FreeBSD Journal

of all events found relating to the program.
Up to this point we have shown the hwpmc

system working only in process scope. The
hanoi program is meant to show only the
performance of the CPU and has no interac-
tion with the underlying operating system. We
will now move on to the syscall benchmark
which shows the performance of one aspect of
the operating system itself, the speed of a sys-
tem call.

We see the main loop of the syscall program
in Listing Y. The benchmark measures the speed
of the operating system’s system calls by repeat-
edly duplicating a file descriptor, getting the
process ID and the user ID, and setting the
umask. Each of these calls does a very small
amount of work compared to the work required
to enter and exit the kernel, and therefore

make good targets for measuring the overhead
of the system call mechanism itself.

We collect the samples and generate a
graph file in Figure 9. The graph file contains
over 5000 lines of output, including functions
that have no relation to the syscall benchmark
program. For this example, we are using sys-
tem-wide scope for even collection, and so we
have collected events for all the various
processes currently executing on the system,
including Emacs, in which this article is being
written. The first several lines of the graph file
are shown in Figure 10.

The largest number of samples, 10%, come
from the witness_unlock() kernel routine. As we
move down the graph we see the constituent
components that contributed to the 12263
events recorded against witness_unlock(),
including do_dup(), closefp(), and sys_umask()
which are the kernel side routines that are
called by the dup(), close() and umask() system
calls. The cheapest system calls, getuid() and
getpid() do not occur until much farther down
in the file. An interesting comparison is the
number of events that are counted against libc
vs. those that are counted against the kernel.

Figure 11 shows the number of events count-

ed against the library version of getuid vs. those
counted against the kernel side of the system
call, sys_getuid. The boilerplate in the C library
is minimal compared to that seen in the kernel,
which tells us that the largest speed up in this
code would be afforded by improving the ker-
nel side code. Both getpid() and getuid() are
trivial, but are used in benchmarks to determine
the overhead of a system call.

Counters Counters Everywhere
Originally only available on a small number of
Intel and AMD processors, hwpmc has now
been extended to cover ARM and MIPS proces-
sors as well, giving developers the ability to pro-
file their code on popular embedded systems.
The events and counters are architecture specif-
ic, but the basic concepts remain the same. The
hwpmc system also provides convenient aliases
for common events, such as cycles, for whatev-
er the CPU’s cycle counter is, and instructions,
for instructions retired. Aliases are always lower
case, and architecture specific counters, like
INSTR_RETIRED_ANY, are upper case. Event
aliases are present across almost all processors
supported by FreeBSD, which makes writing
portable performance analysis scripts easier.

As new processors are put into the market
by CPU vendors the hwpmc system gets
extended to add support for newer events and
newer sets of counting registers. If you’re trying
to understand the performance characteristics
of the software you’re writing or the system as
a whole, the hwpmc system and its tools are a
great place to start. •

George Neville-Neil works on networking
and operating system code for fun and prof-
it. He also teaches various courses on sub-
jects related to computer programming. His
professional areas of interest include code
spelunking, operating systems, networking,
and security. He is the co-author with
Marshall Kirk McKusick of The Design and
Implementaion of the FreeBSD Operating
System and is the columnist behind ACM
Queue magazine’s Kode Vicious. Neville-Neil
earned his bachelor’s degree in computer
science at Northeastern University in
Boston, Massachusetts. He is a member of
the ACM, the Usenix Association, and the
IEEE. He is an avid bicyclist and traveler
and currently resides in New York City.

while (1) {
close(dup(0));
getpid();
getuid();
umask(022);
iter++;

}

UNDERSTANDING HWPMC(4)

> sudo pmcstat -O /tmp/syscall.log -S INSTR_RETIRED_ANY ./syscall 10
3232709 loops
> sudo pmcstat -R /tmp/syscall.log -G /tmp/syscall.graph
CONVERSION STATISTICS:
#exec/elf 1
#samples/total 262735
#samples/unclaimed 6
#samples/unknown-function 41
#callchain/dubious-frames 6

@ INSTR_RETIRED_ANY [113032 samples]

10.85% [12263] witness_unlock @ /boot/kernel/kernel
54.50% [6683] _sx_xunlock
47.36% [3165] do_dup
100.0% [3165] amd64_syscall

32.71% [2186] closefp
100.0% [2186] amd64_syscall

19.93% [1332] sys_umask
100.0% [1332] amd64_syscall

01.45% [1642] sys_getuid @ /boot/kernel/kernel
00.47% [526] getuid @ /lib/libc.so.7

Fig. 9

Fig. 10

Fig. 11

I S I L O N The industry leader in Scale-Out Network Attached Storage (NAS)

With offices around the world,
we likely have a job for you!
Please visit our website at
http://www.emc.com/careers
or send direct inquiries to
annie.romas@emc.com.

Isilon is deeply invested in advancing FreeBSD
performance and scalability. We are looking to
hire and develop FreeBSD committers for kernel
product development and to improve the Open
Source Community.

We’re Hiring!
We’re Hiring!

March/April 2014 29

