
30 FreeBSD Journal

Data Distribution With

DNSSEC

What Is DNSSEC?
The Domain Name Service (DNS) maps host-
names to IP addresses and vice versa. It’s
why you can type http://www.FreeBSD.org
into your web browser, rather than
http://8.8.178.110. But DNS was designed
back in the early 1980s, and was intended
for a much smaller network with a much

more limited range of users. At the time,
people were just happy to have a protocol
that let system administrators enter a host-
name and get an IP back. They didn’t have
to worry about spoofed addresses, malware,
and financially motivated intruders. Today,
on an Internet riddled with criminals and
malware, we need a way to verify that DNS
information is accurate.

One of the hard problems on a public network is trusting identity. How do you
know a server is what it claims to be? Within an organization you can have
many different solutions, but on the public Internet you have the choice of
trusting assorted external entities to verify identity (Certificate Authorities)
or hand-crafting your own network of identification (OpenPGP’s web of
trust). DNS Security Extensions, or DNSSEC, is changing that.

BY MICHAEL W. LUCAS

May/June 2014 31

DNS Security Extensions add cryptographic
verification to DNS information. Each stage of
the DNS lookup has a digital signature, and
local clients can validate those signatures.
DNSSEC does not provide confidentiality, as
DNS is public data. But DNSSEC makes changes
obvious—it makes DNS tamper-evident to any-
one who cares to look.

In some ways, DNSSEC combines the Web of
Trust with Certificate Authorities. The root zone
has a digital signature. Clients must trust that sig-
nature. (Yes, there are protocols to replace that
signature as in case of compromise.) The root
zone gives digital signatures to records for the
zones beneath it, and those zones sign the
records for zones beneath them. So when you use
DNSSEC to look up the IP address for
www.FreeBSD.org, the client can get the digital
signature on the host www.freebsd.org, and then
use the signature inside .org to validate the
domain’s signature, and finally use the signature
on the root zone to validate .org. The client builds
a chain of trust, using the trusted key on the root
zone to trust the identity of the end site.

If you have to trust an external entity, how
does DNSSEC differ from a certificate authority?
Go look in your web browser. You’ll see dozens
of certificate authorities. Some of these organi-
zations are more careful and reputable than
others. Many of them have issued certificates to
organizations not eligible for them – for exam-
ple, more than one CA has issued certificates
for companies like Google, Apple, and
Microsoft to organizations or individuals that
shouldn’t have them.

Organizations, even careful CAs, fail. With
DNSSEC, you don’t rely on a third party to
authenticate identity.

Also, certificate authorities expect payment
for validating identity. That payment might not
be much, but when you have dozens or hun-
dreds of servers it can become rather pricey.
Many organizations choose to not secure data
in transit rather than spend money securing
every little connection.

Today, DNS is used for many things besides
host and IP address information. DNS offers
configuration information to anything from
servers to phones, lists valid mail senders for a
domain, and more. Once this channel becomes
tamper-evident, though, you can start to put
public security information in DNS. We’ll consid-
er two types of data commonly distributed via

DNSSEC: fingerprints for SSH public keys and
SSL certificate.

SSH Host Key Fingerprints
SSH uses public key cryptography to verify that
the server you’re connecting to is actually the
server you think it is, and to secure the data
exchange between client and server. Correct use
of SSH requires that when a user first connects
to a server, he must examine the offered public
key and compare it to an accurate copy of the
public key. This is tedious and annoying, and
most SSH users don’t bother. Worse, most SSH
users quickly decide to ignore public key warn-
ings from SSH, reducing the protocol’s security.

Comparing two cryptographic fingerprints is
exactly the sort of thing a computer is good at,
but until now there was no standard way to
securely transmit these fingerprints online.
DNSSEC provides that channel through SSH
Fingerprint (SSHFP) records. Newer versions of
FreeBSD include an OpenSSH client that auto-
matically checks for SSHFP records.

Start by creating SSHFP records for your hosts
and insert them into the zone’s record for that
host.

Run ssh-keygen –r to generate SSHFP
records from the public key files in /etc/ssh. Use
the hostname, as you want it to appear in the
SSHFP record, as an argument. Here I create
SSHFP records for my web server, www.michael-
wlucas.com.

This displays the SSHFP records for all host keys
on the local machine. These records are specific
to the local machine—I could run the exact
same command on www.FreeBSD.org and
would get records with completely different fin-
gerprints.

If a host has multiple names and you might
use any of those names to connect to the host,
then each host name needs SSHFP records. For
example, my web server is also known as pesti-
lence.michaelwlucas.com. I’ll need two copies

$ ssh-keygen –r www
www IN SSHFP 1 1 f44d08efc159…
www IN SSHFP 1 2 86c744ce05ba…
www IN SSHFP 2 1 9af675d68969…
www IN SSHFP 2 2 7914036e9053e14db552…
www IN SSHFP 3 1 0f7c928e3954c54f0b32…
www IN SSHFP 3 2 5c5192e78de10…

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

32 FreeBSD Journal

of these records in my zone, one for each host-
name, creating something like this.

The hashes are identical for each variant of the
hostname.

To make an OpenSSH client check for SSHFP
records, set VerifyHostKeyDNS to yes in ssh_con-
fig or ~/.ssh/config. ssh(1) will use the SSHFP
records to validate host keys without prompting
the user. Computers are good at comparison. You
aren’t. Let them do the work.

DANE and TLSA
DANE, or DNS-based Authentication of Named
Entities, is a protocol for stuffing public key and

or public key signatures into DNS. As standard
DNS is forged easily, you can’t safely do this with-
out DNSSEC. With DNSSEC, however, you now
have an alternative way to verify public keys.
We’ll use DNSSEC-secured DNS to verify web site
SSL certificates (sometimes called DNSSEC-stapled
SSL certificates).

In DNSSEC Mastery I predicted that someone
would release a browser plug-in to support vali-
dation of DNSSEC-staples SSL certificates. This
wasn’t terribly prophetic, as several different
groups had already started down that road. I’m
pleased to report that the fine folks at
http://dnssec-validator.cz have completed their
TLSA verification plugin. I’m using it in Firefox,
Chrome, and IE. One day browsers will support
DANE automatically, but until then, we need a
plug-in.

DNS provides SSL certificate fingerprints with a
TLSA record. (TLSA isn’t an acronym; it’s just a TLS
record, type A. Presumably we’ll move on to TLSB
at some point.) A TLSA record looks like this:

If you’ve worked with services like VOIP, this
should look pretty familiar. For example, the TLSA

www IN A 192.0.2.33
www IN SSHFP 1 1 f44d08efc159…
www IN SSHFP 1 2 86c744ce05ba…
www IN SSHFP 2 1 9af675d68969…
www IN SSHFP 2 2 7914036e9053e14db552…
www IN SSHFP 3 1 0f7c928e3954c54f0b32…
www IN SSHFP 3 2 5c5192e78de10…
pestilence IN A 192.0.2.33
pestilence IN SSHFP 1 1 f44d08efc159…
pestilence IN SSHFP 1 2 86c744ce05ba…

_port._protocol.hostname TLSA (3 0 1 hash...)

May/June 2014 33

record for port 443 on the host dnssec.michael-
wlucas.com looks like this: long one

Where do we get the hash? Run openssl(1) on
your certificate file. Here I generate the SHA256
hash of my certificate file, dnssec.mwl.com.crt.

Copy the fingerprint into the TLSA record.
Remove the colons. That’s it.

Interestingly, you can also use TLSA records to
validate CA-signed certificates. Generate the
hash the same way, but change the leading
string to 1 0 1. I’m using a CA-signed certificate
for https://www.michaelwlucas.com, but I also
validate it via DNSSEC with a record like this.

So: if you go to the trouble of setting this up,
what does the client see?

Start by installing the DNSSEC/TLSA Validator
(https://www.dnssec-validator.cz/) plugin in your
browser. Hopefully, by the time this article reach-
es you it will be an official FreeBSD port. In the
meantime, Peter Wemm has built the Firefox ver-
sion of the plugin on FreeBSD, and he has a
patch (http://people.freebsd.org/~peter/MF-
dnssec-tlsa_validator-2.1.1-freebsd-x64.diff.txt)
and a 64-bit binary.
(http://people.freebsd.org/~peter/MF-dnssec-
tlsa_validator-2.1.1-freebsd-x64.xpi) If you’re
looking for a way to contribute to FreeBSD, port-
ing this would be very useful.

The plugin adds two new status icons. One
turns green if the site’s DNS uses DNSSEC, and
has a small gray-with-a-touch-of-red logo if the
site does not. Not having DNSSEC is not cause
for alarm. The second icon turns green if the SSL

certificate matches a TLSA record, gray if there is
no TLSA record, and red if the certificate does

not match the TLSA record.
Should you worry about that self-signed certifi-

cate? Check the TLSA record status. If the domain

owner says “Yes, I created this cert,” it’s probably
okay. If the self-signed cert fails TLSA validation,
it’s a self-signed certificate: probably okay on a
mailing list archive, not okay for your bank.

You can use a variety of hashes with TLSA,
and you can set a variety of conditions as well.
Should all certificates in your company be signed
with RapidSSL certs? You can specify that in a

TLSA record. Do you have a private CA? Give its
fingerprint in a TLSA record. If you want to play
with these things, check out RFC 6698 or my
book “DNSSEC Mastery.”

I have had some issues with the plugin on my
laptop after suspending it. My home and office
both perform DNSSEC validation. When I travel
to the coffee shop and resume, the plug-in caus-
es performance issues. Restarting the browser
solves them. I expect this to improve quickly,
however, and it might be a non-issue before you
read this article.

DNSSEC gives you an alternate avenue of
trust, outside of the traditional and expensive CA
model. Spreading TLSA more widely means that
you can protect more services with SSL without
additional financial expenses.

Of course, you cannot deploy either of these
services without working DNSSEC. DNSSEC isn’t
that hard these days—if I can do it, you can too.

_443._tcp.dnssec TLSA (3 0 1
4CB0F4E1136D86A6813EA4164F19D294005EBFC02F10CC400F1776C45A97F16C)

openssl x509 -noout -fingerprint -sha256 < dnssec.mwl.com.crt
SHA256 Fingerprint=4C:B0:F4:E1:13:6D:86:A6:81:3E:A4:16:4F:19:D2:94:00:5E:BF:C0:2F:10
:CC:40:0F:17:76:C4:5A:97:F1:6C

•

_443._tcp.www TLSA (1 0 1
DBB17D0DE507BB4DE09180C6FE12BBEE20B96F2EF764D8A3E28EED45EBCCD6BA)

Michael W. Lucas is the author of Absolute FreeBSD, Absolute OpenBSD, and
DNSSEC Mastery, among others. He lives in Detroit, Michigan, with his wife and

a whole mess of rats. Visit his website at https://www.michaelwlucas.com.

•

