6

A
FW-
"'k\

OVERVIEW

FOR MOST OF THEIR HISTORY, THE BSD

family of operating systems has been known for making great

firewalls. IPFW receives less attention than the PF packet filter,

but it is very well featured with many advantages. IPFW was

first introduced with FreeBSD 2.0 in 1994, while dummynet

functionality came along in 2.2.8 (1998).

he current incarnation of IPFW, a com-

plete rewrite dubbed IPFW2, was writ-

ten and introduced in the summer of

2002. IPFW is remarkably fast and has
very good SMP scalability.

IPFW is a “first match” firewall, meaning that
each packet is compared against a numbered
rules list, and once a rule matches, the search
ends. This allows the administrator to write the
rules in a specific order to achieve the greatest
speed, and avoid comparing certain packets
against more complex rules. Bandwidth and
quality can be defined with pipes and queues,
enforced with rules. IPFW also features an in-
kernel NAT implementation which augments the
existing user-space natd, full support for VIM-
AGE/VNET which creates a separate instance of
the firewall in each VNET jail, multiple rule sets,

FreeBSD Journal

dynamic rules, and tight integration with the
operating system to provide features including
rule matching against the user or jail which gen-
erated the packet.

This article covers the basics of enabling and
configuring IPFW. It then discusses some
advanced topics including rule numbering
advice, simulating real world networks, traffic
prioritization and shaping, and using the in-ker-
nel NAT implementation, including configuring
port forwarding, in conjunction with jails. The
article then ends with an overview of some of
the other features of IPFW.

LOADING THE FIREWALL

While IPFW can be compiled into a custom ker-
nel, support is usually enabled by loading its ker-
nel loadable module. Since the default policy is

to deny all traffic, one should also either cre-
ate a custom rule set, or load a sample rule
set. The built-in /etc/rc.firewall script contains
the logic for a number of basic firewall rule-
sets. The available templates are: open,
closed, simple, client, and workstation.

To enable IPFW, but not block any traffic,
add the following lines to /etc/rc.conf:

firewall_enable="YES"
firewall_type="OPEN"

To create a simple stateful firewall:

firewall_enable="YES"
firewall_type="CLIENT"

firewall_client_net="192.168.0.0/24" #Use the IP for your internal network
#Specify the internal IPv6 net if you have one

nn

firewall_client_net_ipve=

Another option is to indicate the full path
of a custom rule set file as the firewall_type,
and IPFW will read that file and interpret each
line as the arguments of the IPFW command.
IPFW also supports using a preprocessor (such
as m4) on the specified file, indicated by the -
p flag. This allows an administrator to create
a single template that, when pre-
processed, generates the firewall rules
specific to each different host.

b
O

Once the rules are in place, “service
ipfw start” will start the firewall and
apply the rules. Remember to nohup the
command if working remotely, otherwise
the connection may be closed when the
firewall module is loaded, before the rules
that allow the connection are added.

TIP: The /usr/share/examples/ipfw change_rules.sh script will apply a new
set of firewall rules, and then prompt the administrator to confirm that they
are satisfied with the new rules. If the administrator is not satisfied, or is
locked out by the new rules, the old rules are restored after 30 seconds.

SIMPLE RULES

IPFW rules are fairly straightforward and
easy to write. The following is a brief walk-
through of the basic administration com-
mands for the OPEN firewall:

To show existing rules use ‘ipfw list':

@
|

ipfw list
00100 5084973634 3455207967775 allow ip from any to any via lo0
00200 0 0 deny ip from any to 127.0.0.0/8
00300 0 0 deny ip from 127.0.0.0/8 to any
65000 94077116494 77774399268246 allow ip from any to any
65535 0 0 deny ip from any to any

The first column is the rule number. Each
rule is assigned a number which determines
the order in which packets are compared. It is
possible to have multiple rules with the same
number, but this makes it more difficult to
manage those rules.
The next field is the
number of packets
that have matched
the rule, followed by
the total number of
bytes of those match-
ing packets. These counters can be reset
using the “zero” sub-command to “ipfw".
The remainder of each line is the rule.

To add a basic rule which blocks incoming
connections to port 25, use this command:

This creates rule number 5001. A rule is
always created using the keyword “add”, and

ipfw add 5001 unreach port tcp from any to me dst-port 25

May/June 2014 | 7

takes effect immediately. In this rule, the action
that will be applied to a matching packet is
“unreach port”, which will generate an ICMP reply
informing the remote host that the port is not
accessible, as opposed to “deny” which will silently
drop the packet. The body of the rule “tcp from
any to me dst-port 25" determines which packets
match. The first keyword is the protocol (ip, icmp,
tcp, udp, etc). The next section of the body indi-
cates the source and destination addresses of the
packet; it allows keywords “any” and “me”, which
will match any address assigned to any interface on
the machine. Finally, additional options can be
specified, including source and destination port
(src-port and dst-port), direction (in or out), inter-
face (via em0), attempts to create a new connec-
tion (keyword “setup”, packets with the SYN flag
set, but the ACK flag not set), previously estab-
lished connections (keyword “established”, packets
with ACK or RST flags set), and most other IP and
TCP protocol headers.

An example of a more advanced rule:

usually late). Isolating the numbering system
(5000s for rules, 30000s for pipes, 40000s for
gueues) and potentially grouping into related
numeric sets (5001, 30001, 40001),

can assist with clarity and avoid confusion.

SIMULATING REAL-WORLD
NETWORKS

It is often desirable to test an application under
real world conditions, where the network is not a
quiet LAN with no latency or congestion. IPFW
has a feature to simulate the real world conditions
of the public Internet called dummynet(4).
Dummynet provides the ability to artificially limit,
queue, delay or drop packets to create the desired
simulated network conditions.

To enable dummynet functionality, the kernel
module must be loaded. This can be done auto-
matically by adding the following to /etc/rc.conf

dummynet_enable="YES"

The most basic

ipfw add 5002 allow log logamount 50 ip from 192.168.0.0/24 to any dst-port 80 setup J

example of dum-

This creates rule number 5002 (for consistency,
and administrator sanity, example rules

mynet(4) is creat-
ing a pipe with limited bandwidth:

will be numbered up from 5000). This
rule will match, log and allow attempts
to establish a new connection from the

ipfw pipe 30003 config bw 5Mbit/s
ipfw add 5003 pipe 30003 ip from any to 192.168.0.101

specified subnet to any host on port
80. A log limit has been set to 50 entries: while
additional packets will be allowed, only the first
50 packets that match this rule will be logged in
order to prevent the logs from filling entries for
allowed packets. If needed, the log counter can
be reset to 0 with the “ipfw resetlog” command.

NAMING

Rules, pipes and queues each have a separate rule
number space, ranging between 1 and 65535.
This means it is possible to have a rule and a pipe
with the same number, without them being relat-
ed. Whatever numbering system works for you,
keep in mind that having some kind of functional
isolation in your numbering is beneficial if you are
working on a firewall (inevitably remotely, and

The first command configures pipe 30003 with
a bandwidth of 5 megabits per second. Pipe num-
bers are separate from rule numbers (for consis-
tency, and administrator sanity, example pipes will
be numbered in the 30000s, with the least signifi-
cant bits matching the corresponding rule). The
second command creates firewall rule 5003 using
the “add” keyword. Rule 5003 directs all match-
ing traffic (that has not matched a previous rule)
through pipe 30003. This will effectively limit the
downstream bandwidth of the host
192.168.0.101 through the firewall to 5 megabits
per second.

This is useful for shaping traffic from specific
hosts, or simulating slower links, but it does not
provide an especially real simulation in terms of
qualitative network variability. A better simulation
would look like this:

ipfw pipe 30003 config bw 5Mbit/s delay 150 burst 128k plr 0.001 queue 32KBytes noerror

FreeBSD Journal

This will reconfigure pipe 30003 with convenient
options that can help to reproduce application
behavior caused by network issues. The delay
option will add 150ms of latency to each packet,
simulating the latency between Los Angeles and
London. The burst option will allow slightly more
than the maximum amount of bandwidth to be
used, if the pipe was not full beforehand. If the
pipe is idle then the first 128kb of data is passed
without being rate limited. The next option simu-
lates a packet loss rate (plr) of 0.1%, causing an
occasional retransmit, as might be expected on a
less than ideal network. The queue option sets
the maximum amount of excess data (in packets
or KBytes) that will be accepted before additional
packets are refused. This can be used to simulate
buffer bloat, by setting a low rate limit with a
large queue. The final option, noerror, causes the
firewall not to return an error to the calling
application when a packet is dropped.

Normally, if more data is trying to be sent than
can be transmitted within the rate limit set, the
firewall notifies the calling application with the
same error that would be returned if the

device queue was full on an unrestricted network.

By suppressing this error, it simulates loss at an
upstream router further along the path, where
the application will be unaware that the packet
has been dropped until it is not acknowledged on
the other side of the connection.

CONTROLLING THE FLOW
OF DATA

that a set amount of bandwidth is shared equally
among a set of hosts. In this case, rather than
pushing all of the bandwidth directly through a
pipe, the firewall can be used to create a number
of queues with different priorities in order to clas-
sify the different types of traffic.

When a dynamic queue is created with a mask,
each flow (in the following case, 1 per source ip
address in the subnet) shares a parent pipe evenly.
Create a pipe with limited bandwidth and then
Create a queue to use that pipe. Queue numbers
are separate from pipe numbers (for consistency,
and administrator sanity, example queues will be
numbered up from 40000). Add a rule that match-
es the desired traffic. The queue rule will create a
dynamic queue for each unigue flow identifier, as
determined by the specified mask. Each flow will
have equal access to the limited pipe.

ipfw pipe 30005 config bw 75Mbit/s

ipfw queue 40005 pipe 30005 mask src-ip 0x000000ff
ipfw add 5005 queue 40005 ip from any to 192.168.0.0/24

Contrast this to dynamic pipes, where each
source ip address (flow identifier) had its own
separate rate limit.

Sometimes, sharing equally is fine. However
“all hosts are equal, but some hosts are more
equal than others”. Queues can be weighted,
allowing certain traffic to get a greater share of
the available pipe:

ipfw pipe 30006 config bw 75Mbit/s

ipfw queue 40006 pipe 30006 mask src-ip 0x000000ff weight 5
ipfw queue 40007 pipe 30006 mask src-ip 0x000000ff weight 25
ipfw add 5006 queue 40006 ip from any to 192.168.0.0/24

ipfw add 5007 queue 40007 ip from any to 192.168.1.0/24

Pipes can also be allocated dynamically. For
example, if there are many clients behind
the firewall, each client can be limited to a
5Mbit/s flow by creating a dynamic pipe
based on a mask (/24 in this case):

Creating a pipe to allocate band-
width and two queues with differ-

ipfw pipe 30004 config bw 5Mbit/s mask src-ip 0x000000ff HE _ .
ent weightings, with supporting

ipfw add 5004 pipe 30004 ip from any to 192.168.0.0/24

It is also possible to mask based on destination
ip, source or destination port, or protocol.

One other option is to mask ‘all’ bits (source
and destination IP, source and destination port,
and protocol). This limits any single connection
(flow) to 5Mbit/s, but allows each client multiple
connections at this speed:

[
s

ipfw pipe 30004 config bw 5Mbit/s mask all

Sometimes the goal of traffic shaping is not to
limit the traffic of any one host, but to ensure

May/June 2014 | 9

subnet rules, means that hosts in the second The above rule set creates a pipe with 50

subnet get higher priority access to the allocated megabits per second of bandwidth and a maxi-
bandwidth. mum queue of 20 packets. Two queues are then
This same style of traffic management can also created, where the first has a weight 10 times
be applied to specific applications and services. higher than the second. Traffic is then classified
Set up a pipe, add two differently weighted into one of these two queues. Packets with a
queues, plug the queues into rules for the source or destination port of 5060 (SIP), or pack-
specific service, and add a final catch all: ets with the IPTOS_LOWDELAY flag go into the

high priority queue (40008), and the rest of
the traffic goes into the low priority queue
(40011). This should help ensure that VolP
calls do not suffer during periods of peak

ipfw pipe 30008 config bw 50Mbit/s queue 20
ipfw queue 40008 pipe 30008 mask all weight 100

ipfw queue 40011 pipe 30008 mask all weight 10 network activity.

ipfw add 5008 queue 40008 ip from any to any dst-port 5060 Network traffic can also be shaped

ipfw add 5009 queue 40008 ip from any to any src-port 5060 based on criteria specific to the machine
ipfw add 5010 queue 40008 ip from any to any iptos lowdelay the firewall is on. IPFW can match traffic
ipfw add 5011 queue 40011 ip from any to any based on the user, group, or jail that gen-

erated the traffic:

ipfw pipe 30014 config bw 100Mbit/s

ipfw pipe 30015 config bw 5Mbit/s

ipfw pipe 30016 config bw 10Mbit/s

ipfw add 5012 allow ip from any to any uid root

ipfw add 5013 allow ip from any to any gid wheel

ipfw add 5014 pipe 30014 ip from any to any jail 4 in
ipfw add 5015 pipe 30015 ip from any to any jail 4 out
ipfw add 5016 pipe 30016 ip from any to any

The industry leader in Scale-Out Network Attached Storage (NAS)

Isilon is deeply invested in advancing FreeBSD e
performance and scalability. We are looking |
to hire and develop FreeBSD committers for
kernel product development and to improve
the Open Source Communlty

With offices around the world,
we likely have a job for youl
Please visit our website at
http://www.emc.com/careers
or send direct inquiries to
annie.romas@emc.com.

]'EMC2 @IEILDN

10 | FreeBSD Journal

This set of rules will shape the traffic based
on the user or jail that generated it. The first
three commands configure pipes with specific
amounts of available bandwidth. The next two
rules allow all traffic generated by root, or
members of the wheel group, to pass
unshaped. The next pair of rules matches traffic
flowing in and out of a specific jail, creating an
asymmetric connection, limiting traffic to
100mbps inbound, but only 5mbps outbound.
The final rule matches all other traffic (other
users and jails) and limits them to 10mbps total
(not per direction).

BASIC NAT FOR A JAIL

IPFW can be useful if you need to quickly setup
basic NAT to allow a number of jails on a public
facing machine to access the Internet, without
each having a dedicated IP address. This exam-
ple assumes the jails have internal IP addresses
bound to 100.

To enable NAT, add the following to
/etc/rc.conf:

gateway_enable="YES”
firewall_enable="YES"
firewall_type="0OPEN"
firewall_nat_enable="YES"
firewall_nat_interface="emQ"

ideal for IP- or port-based load balancing. IPFW
can create a software monitor port with the
“tee” keyword, which will send a copy of each
matching packet to userland via a divert(4)
socket. IPFW may also be used to mark packets
with a specific FIB (Forwarding Information
Base), causing matching packets to be routed
using a specific kernel routing table.

CONCLUSION

This article only begins to scratch the surface of
the capabilities and features of IPFW. The IPFW
man page provides extensive documentation of
each feature with plentiful examples. The
FreeBSD handbook also includes a chapter

on IPFW with additional explanation and
examples. Users with questions are encouraged
to address them to the freebsd-

questions mailing list or post
on the FreeBSD Forums. e

@
]

#public interface

firewall_nat_flags="redirect_port tcp 10.99.0.2:80 80 redirect_port tcp 10.99.0.2:443 443"

This will create an open firewall that will NAT
outbound traffic via the IP address assigned to
em0. It also configures port forwarding, to redi-
rect inbound traffic on ports 80 and 443 to the
private IP of the jail.

ADDITIONAL FUNCTIONALITY

IPFW has a number of other keywords that can
be used to create advanced rule sets. The
“prob” keyword, as part of the rule action,
determines the probability that a packet will
match the rule. Using this, the administrator
can construct rules to direct portions of traffic
in different ways, for split testing, load balanc-
ing, or simulating failure. Packets can also be
“tagged” with numeric ID numbers to be used
in later rules for things such as establishing trust
relationships between interfaces. IPFW includes
a forwarding capability; the “fwd"” keyword will
change the internal next-hop field of the packet
as it passes through the firewall. This does not
modify the headers of the packet, but changes
how the kernel will route the packet and is

Allan Jude is VP of operations at

ScaleEngine Inc., a global HTTP and Video

Streaming Content Distribution Network,
where he makes extensive use of ZFS on
FreeBSD. He is also the host of the video

podcasts “BSD Now” (with Kris Moore) and

“TechSNAP” on JupiterBroadcasting.com.
Allan is currently working on earning his
FreeBSD doc commit bit, improving the

handbook and documenting ZFS. He taught

FreeBSD and NetBSD at Mohawk College in
Hamilton, Canada from 2007-2010 and has
12 years of BSD unix sysadmin experience.

May/June 2014

11

