7 Amazon Web Services

(AWS) is a set of computing services
provided by Amazon, sharing the
common traits of being configured via
requests tunneled o HTTP(S); being
accessed the same ' '
specific standarc

.
,.“_ _i N) €

by Colin
Percival

4 | FreeBSD Journal

rawing on Amazon's experience build-

ing and operating computing infra-

structure for their retail operations,

AWS was the first entrant into the
modern cloud computing industry and remains
the largest player. Amazon provides dozens of
services, but the most widely used ones can be
placed into four major categories:

Core infrastructure services

e Elastic Compute Cloud (EC2)-Virtual
machines

e Simple Storage Service (S3)-Durable data
storage with ~50 ms response time

® Glacier-Low-cost durable data storage
with ~4 hour response time

® DynamoDB-High-performance durable
NoSQL data store

e Simple Queue Service (SQS)-Reliable
message queueing [1]

Edge location services
e Route 53-Authoritative DNS
e CloudFront—HTTP(S) content distribution
network

Managed software services
e ElastiCache—-Memcached or Redis

PostgreSQL, Oracle, or SQL Server
e Elastic Map Reduce (EMR)-Hadoop

AWS usability services

e |dentity and Access Management—Create
subaccounts with specified privileges

e CloudFormation—Scripted deployment of
a set of AWS resources

¢ CloudWatch—Gathering and monitoring
of AWS and custom metrics

e CloudTrail-FAWS API call logging

All of these services are accessed via AP
calls made using a pair of AWS “access keys."”
An “Access Key ID,” which is sent as part of
the requests to identify the account, and a
“Secret Access Key,” which is used to create a
cryptographic signature that authenticates the
API request [2]. Amazon provides libraries for
several programming languages to facilitate
use of these APIs in addition to a command
line utility and a web interface that can be
used to manage many services. This article is
concerned only with the Elastic Compute
Cloud service, but readers interested in
other AWS services are encouraged
to consult Amazon's excellent
documentation [3].

[1] While message
queuing may seem like
esoteric functionality,
having reliable queues
can be a great boon to
designers of distributed
systems where nodes
might die and leave
work half-done if it is
not retained in a reli-
able queue

[2] In addition to the
fully privileged “root”
access keys for an
account, the AWS
Identity and Access
Management service
can be used to create
restricted “users” with
access keys able to
issue only a specified
set of requests

[3] httpw/
aws.amazon.com/
documentation/

[4]1n keeping with
Amazon’s low-over-
head, self-serve model,
credit cards are the
only payment method
accepted except for US
government users and
companies spending
over $5,000/month

[5] For production use,
you would probably
want to use the
Identity and Access
Management to create
a "User” which has a
restricted set of privi-
leges, and then create
a key pair for that sub-
account. For simplicity,
we'll use the “root”
account keys in this
article

Gettin

Starte

efore you can use EC2 (or any other AWS services) you will need to create an with AWS

AWS account. Point a web browser at http://aws.amazon.com/ and click on the
“Sign Up” button. You can then log in with an existing amazon.com account or createa new one.

Once you've created or logged into an amazon.com account, you will be asked to provide your name and
contact details, accept the AWS Customer Agreement, provide a credit card for billing [4], and complete an
“identity verification” process consisting of receiving a phone call and entering a four digit PIN to activate
your account for Amazon Web Services.

Now that you have an AWS account, you will need keys for accessing it [5]. Point a web browser at
https://console.aws.amazon.com/iam/home?#security_credential and select “Access Keys” and “Create New
Access Key.” Make a note of the Access Key ID and the Secret Access Key and create a file named
~/ .aws/config containing the following lines (you will need to create the ~/ .aws/ directory first):
[default]
aws_access_key id = <Your Access Key ID goes here>

e Relational Database Service (RDS)-MySQL,

aws_secret access key = <Your Secret Access Key goes here>

region = us-east-1
Finally, you need software for accessing the AWS services. In this article we're going to use the AWS
Command Line Interface (http://aws.amazon.com/cli/). To install this on your FreeBSD system run:
make -C /usr/ports/devel/awscli install clean or
pkg install awscli as root.

July/August 2014 | §

[6] For customers who
can commit to long-term
use, Amazon also offers
“reserved instances, ”
which are akin to buying
hardware and then pay-
ing a heavily discounted
rate for power and net-
working. These can offer
substantial savings over
the standard “on-
demand” hourly rates for
users with consistent
usage patterns.

[7] For more details
about AWS regions, see
http://aws.amazon.com/a
bout-aws/globalinfra-
structure/regional-
product- services/ .

[8] when EC2 launched,
it only supported Xen
“PV” mode. Amazon
added limited support for
HVM in order to support
Windows, but did not
retrofit their existing sys-
tems to support it.

[9] Users who will be
launching a large number
of identical instances
(e.g., spinning up web
and application servers
based on fluctuating traf-
fic levels) often create
customized AMIs with
code and configuration
preinstalled. In such cases
there will not necessarily
be any need to log in via
SSH, of course.

Amazon Elastic Compute
Cloud (EC2)

The Amazon Elastic Compute Cloud (EC2)
is, at its core, rent-by-the-hour virtual
machines running under the Xen hypervisor.
When EC2 was first launched in 2006, the
idea of renting “virtual servers” was already
well established, as many companies offered
such services using either FreeBSD jails or virtu-
alization systems such as Xen, but such offer-
ings typically involved paying for a month or
more at a time, and the role of virtual servers
was limited to being a cheaper alternative to
dedicated servers. By introducing hourly billing
for virtual machines and providing an API for
quickly and automatically provisioning new vir-
tual machines, EC2 made available an entirely
different benefit of virtualization—flexibility.
Rather than renting servers for months at a
time [6], EC2 is designed to allow users to
scale up and down rapidly in response to
load—hence the “Elastic” in “Elastic Compute
Cloud.”

Launching an EC2 instance-or indeed any
sort of virtual machine-requires specifying
three important parameters: Where to launch
the virtual machine, what type of virtual
machine to launch, and what should run on
the virtual machine. Amazon Web Services,

including EC2, is split into 8 Regions: North
Virginia, Oregon, North California, Ireland,
Singapore, Tokyo, Sydney, and Sao Paulo [7].
With the exception of some “support” services
like billing and authentication systems, each
region functions independently of the others.
Consequently, in addition to the obvious bene-
fit of reducing latency by placing servers close
to systems with which they will be communi-
cating, EC2 regions can also provide benefits
for redundancy and regulatory compliance
(e.g., ensuring that EU data never leaves the
EU). Regions have names like “us-east-1".

Within each AWS Region, there are two or
more EC2 Availability Zones. These exist for
the purpose of making redundant systems pos-
sible: Amazon does its best to ensure that any
failures (power, networking, etc.) can only
affect a single availability zone. Availability
zones have names like “us-east-1a”.

When EC2 first launched, it only offered a
single type of virtual machine, but over the
years their offerings have expanded to 38
types, with names like m3.medium,
c3.xlarge, or i2.8xlarge (in general, <fami-
ly>.<size>). While there is not space in this
article to provide details about all of them,
there is an important technical detail concern-
ing the virtualization technology—FreeBSD

Name # CPUs RAM Solid state disks Price (us-east-1 region)
t2.micro 10% 1.0 GB none $0.013/hour
t2.small 20% 2.0 GB none $0.026/hour
t2.medium 2 x20% 4.0 GB none $0.052/hour
m3.medium 1 3.75GB 4 GB $0.070/hour
m3.large 2 7.5 GB 32 GB $0.140/hour
m3.xlarge 4 15.0 GB 80 GB $0.280/hour
m3.2xlarge 8 30.0 GB 160 GB $0.560/hour
c3.large 2 3.75 GB 32 GB $0.105/hour
c3.xlarge 4 7.5 GB 80 GB $0.210/hour
c3.2xlarge 8 15.0 GB 160 GB $0.420/hour
c3.4xlarge 16 30.0 GB 320 GB $0.840/hour
c3.8xlarge 32 60.0 GB 640 GB $1.680/hour
r3.large 2 15.0 GB 32 GB $0.175/hour
r3.xlarge 4 30.5 GB 80 GB $0.350/hour
r3.2xlarge 8 61.0 GB 160 GB $0.700/hour
r3.4xlarge 16 122.0 GB 320 GB $1.400/hour
r3.8xlarge 32 244.0 GB 640 GB $2.800/hour
i2.xlarge 4 30.5 GB 800 GB $0.853/hour
i2.2xlarge 8 61.0 GB 1600 GB $1.705/hour
i2.4xlarge 16 122.0 GB 3200 GB $3.410/hour
i2.8xlarge 32 244.0 GB 6400 GB $6.820/hour

6 | FreeBSD Journal

requires support for Xen “HVM" mode, which
the older EC2 instance types only provide in
combination with a Windows license [8]. Most
people will want to use one of the 21 instance
types belonging to the "current generation”
M3 ("general purpose”), C3 ("high CPU"), R3
("high RAM™"), 12 ("high I/0"), or T2 ("low
cost") families—which provide better price/per-
formance levels than the older instances any-
way. See chart on page 6.

Note that with the exception of the amount
of SSD storage on the “medium” and “large”
sizes, each step size within a family doubles
the number of CPUs, amount of RAM,
amount of SSD storage, and hourly price.
Conversely, comparing the xlarge sizes of dif-
ferent families, we see that the “high CPU"
family is identical to the “standard” family
except with half the RAM and a 25% discount
on price. The “high RAM” moves in the oppo-
site direction, with double the RAM of “stan-
dard” instances and a price 25% higher; and
“high 1/0" instances are “high RAM”
instances with a tenfold increase in SSD stor-
age—and a further 145% increase in price.

The T2 family is different from other EC2
instance types, in that it has "burstable" CPUs
rather than dedicated CPUs: Over the long run
they can only use a CPU for 10% or 20% of
the time, but if a CPU is underused a "bal-
ance" will accumulate for up to a day. These
instances can be very useful for systems which

n this example we will be launching an m3.medium instance costing $0.07/hour.
If you forget to shut down the instance, it will continue running and your credit
card will be billed roughly $50/month—so don’t forget!

are mostly idle but occasionally need to rebuild
ports or other similarly CPU-taxing work.

(See http://aws.amazon.com/blogs/aws/
low-cost-burstable-ec2-instances/ for details).

Once you have decided where to launch an
instance and what type of instance to launch,
you'll need to tell EC2 what software the
instance should run. In EC2 jargon, this is an
Amazon Machine Image (AMI) and it con-
sists of a disk image (containing FreeBSD, for
example) and some metadata which tells EC2
how to launch the image. AMIs can be creat-
ed directly from disk snapshots in EC2 or by
“re-bundling” a running EC2 instance-but
new users will find it easiest to start by using
one of the thousands of existing, freely avail-
able AMls.

Because EC2 operates in a “cloud” environ-
ment, there are two more considerations
required to securely connect to and use a new
virtual machine—firewall rules and login cre-
dentials [9]. All EC2 instances are launched
into “security groups,” which is a fancy way
of saying that a firewall rule set can be created
in advance and applied to a new instance. By
default, new security groups allow all outgo-
ing traffic, but block all incoming traffic except
responses to outgoing connections [10].
Finally, EC2 provides a mechanism for specify-
ing an SSH public key for logging in to an
instance. This key is provided (along with a
variety of other metadata) over a special

[10] The firewall is state-
ful, but not perfectly so. In
particular, in some cases it
will block incoming ICMP
fragmentation required
packets, with the effect of
breaking Path MTU
Discovery. You may wish to
add a firewall rule to allow
incoming ICMP type 3
code 4 packets.

[11] The opposite applies
if you're launching a large
number of identical
instances between which
you will have traffic load-
balanced. In that case you
should put them all into
the same Security Group
so that you can adjust
the firewalls for all of
them at once.

Launching
a FBSD EC2

Instance

If you followed the instructions under “Getting started with AWS,” you should now have
the awscli port installed and a configuration file in ~/ .aws/config. Before we launch an EC2
instance, we need to create an SSH key we will use to log in to it. Run the following commands:

$ ssh-keygen -f ~/.ssh/ec2login

$ aws ec2 import-key-pair --key-name mykey --public-key-material file:// realpath

~/.ssh/ec2login.pub”

This will create an SSH key (in the file “ec2login”) and send the public part up to EC2, associating it with the name
"mykey.” (The £ile:// mess is because the awscli code expects URIs for everything rather than simple paths to
files. | suggested changing this, but the author felt that using URIs provided better consistency.)

We're also going to create an EC2 security group. For historical reasons there is a pre-existing “default” group, but
it's a good idea to create a new security group when you're launching an instance for a new purpose. That way you can
adjust its firewall rules later without affecting other instances [11]. Run the following commands to create a security
group and allow SSH connections from your IP address to its instances:
$ aws ec2 create-security-group --group-name mygroup --description “my security group”

$ aws ec2 authorize-security-group-ingress --group-name mygroup --protocol tcp --port

22 --cidr <your IP address>/32

Now to launch an instance: Normally at this point you would want to look up which AMI you want to launch-there
is a list at http://www.daemonology.net/freebsd-on-ec2/ with AMI IDs for different versions of FreeBSD in each AWS
region, but for this example we'll use FreeBSD 10.0-RELEASE in the us-east-1 region (which is the default value we
selected when we created the ~/.aws/config file)—that AMI is ami-69dae900.

Launching Instance
continues next page

N //‘ 1
l};& Launching continued

Run the following command to launch FreeBSD 10.0-RELEASE into an m3.medium virtual machine
which we will use the mykey SSH key to connect into, and output the instance ID. [12]
$ aws ec2 run-instances --image-id ami-69dae900 --instance-type m3.medium --key-
name mykey —security-groups mygroup --output text --query 'Instances[*].InstanceId'’
Make a note of the instance ID as you'll need it for the rest of the commands here. If you forget it, you can list all
your running instance (and get lots of information about them) by running
$ aws ec2 describe-instances.

Now go make a cup of coffee. We need to kill about five minutes while FreeBSD boots and EC2 collects its
console output for us [13].

You're back and caffeinated? Good, now you can run
$ aws ec2 get-console-output --output text --instance-id <Your Instance ID goes
here> | more
and you will see FreeBSD's usual boot-time kernel output. Scroll down, though, and you'll see a few things you
don't get in a standard FreeBSD install. First, freebsd-update runs, downloading and installing critical
updates to FreeBSD—important, since with a virtual machine in the “cloud” we can't exactly follow the usual
security advice to log in and apply security updates before exposing a new server to the internet! After that,
you'll see the pkg bootstrap running and the awsc1i package being downloaded and installed. We will see
later how to change the set of packages installed on first boot. Finally, we see FreeBSD rebooting. This is done if
freebsd-update installed any updates or any rc.d scripts were added by installed packages, so that we will
have a system running up-to-date code with all enabled services.

It's interesting to see what FreeBSD is doing, but there's really only one vital reason to read the console out-
put: To see the fingerprints of the SSH host keys. These host keys are generated when the system first boots,
and-again, because this is in the cloud-we need to use this out-of-band mechanism to ensure that when we
connect to the system we're SSHing into the right box. In addition to being printed when the keys are generat-
ed, the fingerprints are printed again with a prefix of ec2: in order to make them easily extracted by automatic

tools [14].

Speaking of SSH, it's time to use it. Run:
$ aws ec2 describe-instances --output text --query
'Reservations[*].Instances[*].PublicIpAddress' --instance-id <Your Instance ID

goes here>
to get the public IP address of your instance. Then run:
$ ssh -i ~/.ssh/ec2login ec2-user@<Instance IP address goes here>

SSH should prompt you to confirm the SSH host fingerprint. You can compare this against the value you saw
a moment ago in the console output.

You should now be logged in to your EC2 instance as the default unprivileged “ec2-user” user. To become
root, simply run 'su' (there is no root password set in the standard image). This system will now behave like any
other FreeBSD 10.0-RELEASE system. When you've finished looking around, log out.

Now unless you want to pad Amazon's profits, you should destroy your EC2 instance. Run the following

commands:

$ aws ec2 modify-instance-attribute --block-device-mappings '[{ “DeviceName”:
“/dev/sdal”, “Ebs”: { “DeleteOnTermination”: true } }]' --instance-id <Your
Instance ID goes here>

$ aws ec2 terminate-instances --instance-ids <Your Instance ID goes here>

The first command is necessary because the default behavior is to retain a copy of the boot disk of a termi-
nated instance (costing $0.50/month for the standard 10-GB instance boot disk).

If you want clean up your AWS account completely, you can also delete the security group you created using
the 'aws ec2 delete-security-group' command and delete the SSH key using the 'aws ec2
delete-key-pair' command, but these are not essentia~Amazon doesn't charge anything for security
groups or SSH keys.

FreeBSD Journal

management interface. In FreeBSD, it is code in
the sysutils/ec2-scripts port which
reads this data and arranges for user logins.

Elastic Block Store, Elastic IP
Addresses, Elastic Load
Balancer (oh my!)

As a platform for creating virtual machines, EC2
is useful enough, but there are several other
services that add important functionality to
EC2. First, Elastic Block Store (EBS), which
makes it possible to create and attach virtual
disks to EC2 instances, second, Elastic IP
Addresses (EIP), which make it possible to
reserve an IP address and assign it to an
instance or move it between instances, and
third, Elastic Load Balancers (ELB), which pro-
vide an easy mechanism for load balancing traf-
fic between a pool of instances.

Elastic Block Store would probably have been
better named EC2 Storage Area Network. With
an API call you can create a virtual disk of
between 1 GB and 1 TB, known as an EBS
Volume, within a specified EC2 availability
zone. Another API call can be used to attach a
volume to an EC2 instance. Because these vol-
umes are accessed over Amazon's network
rather than being physically connected to the
boxes hosting EC2 instances, it is easy to
detach a volume from one EC2 instance and
attach it to another. This can help for migrating
data to a new instance, or-as often happens to
FreeBSD developers—if a system is accidentally
rendered unbootable [15].

Elastic Block Store comes in three flavors:
"Magnetic" (formerly known as "Standard"),
"Provisioned IOPS," and "General
Purpose." Magnetic volumes are cheap, but as
the name implies they have typical "spinning
iron oxide" performance levels—typically 50 to
100 I/O operations per second on 128 kB
blocks. Provisioned IOPS volumes, in contrast,
allow you to specify a target I/O rate of
between 1 and 4,000 I/O operations per second
on 16 kB blocks, but are more expensive, espe-
cially for large reserved I/O rates. General
Purpose volumes fall into a middle ground:
They can burst up to 3,000 I/O operations per
second, but provide a performance baseline of
3 I/O operations per second per GB of allocated
space. It is important to remember however
that because EBS is accessed over the network,
all flavors are slower than the SSD storage
which is attached directly to EC2
instances—there is an unavoidable trade-off
between optimizing for performance and opti-

mizing for usability.

Elastic IP Addresses should have been named
Reserved IP Addresses, since that's exactly what
they are. Like EBS volumes, Elastic IP Addresses
can be allocated, attached to EC2 instances, and
moved between EC2 instances. These are neces-
sary for directly public-facing servers, since with-
out those EC2 instances are created with ran-
domly selected IP addresses and there is no way
for a new instance to assume the address of an
earlier instance which has been shut down.

While Elastic IP Addresses make it possible to
put an address into DNS and know that it can
be pointed at a new EC2 instance if required,
this does not satisfy the needs of companies
with large numbers of public-facing servers.
Enter Elastic Load Balancers: An Elastic Load
Balancer is configured with a pool of EC2
instances—as usual, with API calls to add or
remove EC2 instances—and it forwards incoming
connections to instances from the pool.

There are many more EC2 features: Virtual
Private Cloud, which allows you to configure
virtual networks including routing tables, IP
subnets, and VPN endpoints; Elastic Network
Interfaces, which make it possible to attach
multiple addresses to an EC2 instance;
CloudWatch, which provides monitoring of EC2
instances; Autoscaling, which makes it possible
to automatically launch or shut down instances
in response to load. There is not enough space
here to write in detail about everything, so we
can merely refer the reader to Amazon's excel-
lent website and documentation.

Instance Autoconfiguation
Using configinit

While many people may be satisfied with
launching a clean FreeBSD system and SSHing
in to perform necessary system configuration,
especially for one-off servers, there are advan-
tages both in speed and repeatability to having
some or all of the configuration process script-
ed and performed automatically when an EC2
instance first boots. Many Linux systems, includ-
ing Ubuntu and RedHat, make use of the
CloudInit system, which allows a user-data file
provided when an EC2 instance is launched to
specify a set of commands to be run.

Cloudlnit is not very well suited for use in
FreeBSD for two reasons. First, it uses Python,
which is not part of the FreeBSD base system
[16], and second, because Cloudinit is built
around the concept of configuring a system by
running commands. In contrast to Linux sys-
tems, FreeBSD is far more “configuration file

[12] The default behav-
ior of the AWS CLl is to
output JSON containing
a very large number of
parameters about the
request completed. This
is useful for programs
which speak JSON, but
for shell scripts | always
use the --output text
option along with
—--query to specify the
particular details | want.

[13] It seems to take a
minimum of 3 minutes
before console output
will be available via the
EC2 API, and if you try
to read the output too
soon, EC2 seems to
cache the “no output”
response and you need
to wait even longer.

[14] one such tool is
the author’s ec2-known-
host script, which popu-
lates .ssh/known_hosts
with EC2 host finger-
prints, available at
http://www.daemonolo-
gy.net/blog/2012-01-16-
automatically-populat-
ing-ssh-known-
hosts.html.

[15] The process in this
case is non-trivial, but it
is possible to detach the
boot disk from an
instance, attach it tem-
porarily to another
instance so that some-
thing can be fixed, and
then move it back and
reboot the formerly non-
booting instance.

[16] It isn't feasible to
include Python in stan-
dard FreeBSD EC2
images either, since
there are several differ-
ent versions of Python in
the FreeBSD ports tree,
and the one installed to
run Cloudinit would
inevitably not be the one
people would want to
use for other purposes.

July/August 2014 | 9

oriented,” and so | decided to write my own location).

system, which | called “configinit.” Unlike e If a file starts with the characters #! then

CloudInit, the configinit system takes the form the file will be executed (this is most likely to

of a very simple shell script, and is included in be used with shell scripts).

FreeBSD EC2 images starting from 10.0- Otherwise, configinit attempts to extract the

RELEASE. Similar to CloudInit, however, config- file as an archive using bsdtar (which automati-

init runs early in the boot process when an EC2 cally detects a wide range of archive and com-

instance first launches, downloads the EC2 pression formats), and then recurses onto each

user data (which is exposed via the same man- file in lexicographical order.

agement interface used for ssh public keys), The most straightforward use of this func-

and then processes that file. tionality is to add content to FreeBSD's “master
There are four types of files that configinit configuration file,” /etc/rc.conf. The con-

can handle: figinit code instructs the rc system to reload

e |f a file starts with the characters >/ then that file in order to ensure that settings

the first line minus the leading > character will changed will be reflected later in the boot

be interpreted as a path, and the rest of the process. In addition to the standard FreeBSD

file (everything except the first line) will be configuration options (e.qg.,

written to that location (replacing any existing sshd enable="YES"”, which appears in the

file). rc.conf file in EC2 images), there are a few

e |f a file starts with the characters >>/ then useful options for the packages which are pre-

the first line minus the leading >> characters installed on EC2 images:

will be interpreted as a path, and the rest of

the file will be appended to that location

(creating a new file if no file yet exists at that will cause those packages to be downloaded

firstboot pkgs list="1list of packages”

. Now we're going to use configinit to launch a system with Drupal installed. The same
Settlng Up caveat applies here as before—EC2 instances cost money, so make sure you don't forget to
Drupal at Instance clean up after you've finished exploring
. First, let's create a new SSH key pair for the instance we're going to launch. Although
Launch Using : : . . . : ; Mg
. .. we're not going to SSH into the instance right now, if you were planning on using this you
conf1g1n1t would need to be able to SSH in later to perform upgrades (of both FreeBSD and the packages
required by Drupal) and to perform backups. Run the following commands:
$ ssh-keygen -f ~/.ssh/drupal
$ aws ec2 import-key-pair --key-name drupal --public-key-material file:// realpath ~/.ssh/drupal.pub”

We also need to create a new EC2 security group (aka. firewall rule set). In this case we want to open up port 80 to
the entire world, while there's no need for SSH access. If and when you need to SSH into this instance later, you can use
authorize-security-group-ingress to add a rule allowing incoming traffic on port tcp/22. Run the following
commands:
$ aws ec2 create-security-group --group-name drupal --description “drupal demo security group”
$ aws ec2 authorize-security-group-ingress --group-name drupal --protocol tcp --port 80 --cidr
0.0.0.0/0

Now for the configinit data, rather than retyping the data run the following command to fetch a Drupal configinit file:
$ fetch http://freebsd-ec2-dist.s3.amazonaws.com/drupal-conf.tar

If you look inside that archive you'll see three files named “rcconf,” “apache,” and “drupalinit.” The names
aren't important; when configinit extracts the archive and processes the files individually, it will handle them in lexico-
graphical order, but in this case the order doesn't matter. The file “rcconf” contains the following lines:
>>/etc/rc.conf
ec2 fetchkey user="drupal-user"
firstboot pkgs list="apache22 drupal7 mod php5 mysgl55-server"
apache22 enable="YES"
mysql enable="YES"

The first line means “append the rest of this file to /etc/rc.conf,” while the remaining lines are rc.conf settings
that tell the EC2 boot scripts to set up SSH logins for a user named “drupal-user.” Download and install the packages
apache22, drupal7, mod php5, and mysgl55-server, start Apache 2.2 and start MySQL.

The file “apache” writes to /usr/local/etc/apache22/Includes/local.conf the necessary configuration
to tell Apache to serve files out of /usr/local/www/drupal? (which is where the Drupal port installs its data), and to
enable PHP (which Drupal uses).

The file “drupalinit” is a shell script which performs steps needed to allow Drupal to work. It sets ownerships to

and installed when the EC2 instance first boots,
firstboot freebsd enable="NO"
willl disable the launch-time bootstrapping of
the pkg system (useful if an instance is being
launched into a networking environment where
it cannot access the pkg mirrors),
firstboot freebsd update enable="NO”
will disable the launch-time downloading and
installation of critical errata and security
updates,
ec2_fetchkey user="username”
will change the name of the user created and
configured for SSH access via the public key pro-
vided to EC2.

For example, providing the following user-
data file

launched automatically during the boot
process.

More sophisticated uses of configinit will
generally need to create or edit multiple files. In
those cases it will be necessary to create an
archive file (e.g., a tarball) containing one file
for each required configuration change (see
“Setting up Drupal at Instance Launch” for an
example).

Future Directions for
FreeBSD/EC2

FreeBSD has been available on EC2 in some
form since December 2010, and it has been sta-
ble enough for production use since mid-2011.
A lot of progress has been made since then, and

especially in the past year. In October
2012, Amazon announced the M3
instance family, followed in November
by the C3 instance family, in
December 2013 by the 12 instance
family, in April 2014 by the R3 instance family,
and in July 2014 the T2 instance family-and
between them, this “current generation” of EC2

>>/etc/rc.conf
firstboot pkgs list="apache22 python33”
ec2 fetchkey user="webmaster”

apache22 enable="YES"”

will result in Apache 2.2 and Python 3.3 being
preinstalled, a user named “webmaster” being
created for SSH logins and Apache 2.2 being

the “www" user so that the Drupal code (running via Apache and mod_php5) can function and creates a mysgl database
and user for Drupal to use. There's a catch, however. Because configinit runs early in the boot process—by necessity, early
enough to add rc.conf settings which specify which packages to install-there is no mysgl daemon running and the
Drupalfiles which need to have ownership changed do not exist yet. To escape this limitation, the drupalinit script
creates a new rc.d script, which will run after packages are installed and mysgl is running—a script which then deletes
itself after initializing Drupal data to prevent itself from being run again the next time the system boots.

Now that we've seen how the Drupal configinit file works, let's see it in action. Run the following command:
$ aws ec2 run-instances --image-id ami-69dae900 --instance-type m3.medium --key-name
drupal --security-groups drupal --user-data file://drupal-conf.tar --output text --
query 'Instances[*].InstanceId'’

Note that the only change between this and launching a standard FreeBSD image is the added --user-data
file://drupal-conf.tar option. As before, the clumsy file:// syntax is required due to the URI-centric design
of the AWS CLI.

As before, we'll need to wait for FreeBSD to boot and EC2 to collect its console output. After five minutes, run:
$ aws ec2 get-console-output --output text --instance-id <Your Instance ID goes here>
| more and you'll see FreeBSD booting, updating itself, downloading and installing the packages we requested,
rebooting, launching the Apache and MySQL daemons, and finally you'll see a line
Drupal password: <12 characters>
which is the (randomly generated) password for the MySQL “drupal” user. Once we have the password, we can proceed
with configuring Drupal. Run:
$ aws ec2 describe-instances --output text --query 'Reservations[*].Instances[*].
PublicIpAddress' --instance-id <Your Instance ID goes here>
to get the public IP address of your instance, and then paste it into your web browser of choice. When prompted for
database parameters, tell Drupal to use the database named “drupal,” database username “drupal,” and the password
you obtained from the console output. Congratulations, you now have Drupal running and ready for you to add content
to your new website!

As always with EC2 instances, when you've finished you'll want to clean up to avoid paying unnecessary costs. Run
the following commands:
$ aws ec2 modify-instance-attribute --block-device-mappings '[{ “DeviceName”:
“/dev/sdal”, “Ebs”: { “DeleteOnTermination”: true } }]' --instance-id <Your Instance
ID goes here>
$ aws ec2 terminate-instances --instance-ids <Your Instance ID goes here>

[1 7] http://Awww.
daemonology.net/blog/
2014-02-16-FreeBSD-EC2-
build.html

[18] FreeBSD/EC2 already
autoconfigures swap
space on EC2 ephemeral
disks, but most instance
types have far more
ephemeral disk space
than swap space alone
can use.

¢ FreeBSD in the Amazon EC2 Cloud

instance types make it possible to run FreeBSD
across a wide range of hardware profiles with-
out any of the evil hacks needed to run
FreeBSD on earlier instance types.

Coming from the other direction, starting
with FreeBSD 10.0-RELEASE in January 2014,
FreeBSD gained Xen support in the GENERIC
kernel configuration, allowing official release
binaries to run in EC2 and making it possible
to use the FreeBSD Update system for binary
updates. The addition of configinit made it
possible to configure FreeBSD virtual
machines via EC2 user data and scripts are
now available that allow anyone to build
FreeBSD AMIs [17].

So what's next? This will depend largely on
what FreeBSD-and EC2-users ask for, but
some possible highlights include:

e Integrating the EC2 AMI building process
into the FreeBSD release process and having
AMils built by the FreeBSD release engineering
team,

e Providing EC2 AMIs with ZFS or MFS root
filesystems,

e Automatically using EC2 ephemeral disks
to cache or mirror data on EC2 Elastic Block
Store volumes to provide greater performance

and/or reliability [18],

e Using Identity and Access Management
“roles” to allow an EC2 instance to automati-
cally create and add more Elastic Block Store
volumes to itself, allowing for truly “elastic”
file-systems, and

¢ Providing more configinit samples for
ready-to-use server setups.

But more than anything else what
FreeBSD/EC2 needs right now is more users,
more testing, and more feedback. What
works? Is there anything that doesn't work?
What features would you like to see added?
Most of the development is done. Now it's
time for the baton to be passed to the wider
user community—go forth and use! ®

Colin Percival has been a FreeBSD
developer since 2004 and was the pro-
ject’s Security Officer from 2005 to 2012.
He started struggling to bring FreeBSD

to the EC2 environment in
2006, and now uses it
y : extensively in the Tarsnap
= online backup service,
which he founded and continues to run.

RootBSD

Premier VPS Hosting

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.
Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

12

. @ www.rootbsd.net

@

FreeBSD Journal

