20

by John Baldwin

One of the exciting new
features in FreeBSD 10.0 is the

bhyve hypervisor.
Hypervisors and virtual machines
are used in a wide variety of appli-
cations. This article focuses on
using bhyve as a tool for aiding
development of FreeBSD itself.

Not all of the details covered are
specific to FreeBSD development,
however, and many may prove
useful for other applications.

% Note that the bhyve hypervisor is under
constant development and some of the features
described have been added since FreeBSD 10.0
was released. Most of these features should be
present in FreeBSD 10.1.

FreeBSD Journal

=
N

L

The Hypervisor

The bhyve hypervisor requires a 64-bit x86
processor with hardware support for virtualiza-
tion. This requirement allows for a simple, clean
hypervisor implementation, but it does require a
fairly recent processor. The current hypervisor
requires an Intel processor, but there is an active
development branch with support for AMD
processors.

The hypervisor itself contains both user and
kernel components. The kernel driver is con-
tained in the vmm. ko module and can be
loaded either at boot from the boot loader or at
runtime. It must be loaded before any guests
can be created. When a guest is created, the
kernel driver creates a device file in /dev/vmm
which is used by the user programs to interact
with the guest.

The primary user component is the
http://www.freebsd.org/cgi/man.cgi?query=bhyv
e&sektion=8&manpath=FreeBSD+10.0-RELEASE
bhyve(8) program. It constructs the emulated
device tree in the guest and provides the imple-

mentation for most of the emulated devices. It
also calls the kernel driver to execute the guest.
Note that the guest always executes inside the
driver itself, so guest execution time in the host
is counted as system time in the bhyve process.

Currently, bhyve does not provide a system
firmware interface to the guest (neither BIOS
nor UEFI). Instead, a user program running on
the host is used to perform boot time opera-
tions including loading the guest operating sys-
tem kernel into the guest's memory and setting
the initial guest state so that the guest begins
execution at the kernel's entry point. For
FreeBSD guests, the http://www.freebsd.org/cgi/
man.cgi?query=bhyveload&sektion=8&man-
path=FreeBSD+10.0-RELEASE bhyveload(8) pro-
gram can be used to load the kernel and pre-
pare the guest for execution. Support for some
other operating systems is available via the
"https://github.com/grehan-freebsd/
grub2-bhyve"grub2-bhyve program which is
available via the "http://www.freshports.org/
sysutils/grub2-bhyve/" sysutils/grub2-bhyve port
or as a prebuilt package.

The bhyveload(8) program in FreeBSD 10.0
only supports 64-bit guests. Support for 32-bit
guests will be included in FreeBSD 10.1.

Network Setup
The network connections between the guests
and the host can be configured in several ways.
Two different setups are described below, but
they are not the only possible configurations.
The only guest network driver currently sup-
ported by bhyve is the "http:/docs.oasis-
open.org/virtio/virtio/v1.0/virtio-v1.0.html " VirtlO
network interface driver. Each network interface
exposed to the guest is associated with a
http://www.freebsd.org/cgi/man.cgi?query=tap
%284%?29 tap(4) Interface in the host. The
tap(4) driver allows a user program to inject
packets into the network stack and accept pack-
ets from the network stack. By design, each
tap(4) interface will only pass traffic if it is
opened by a user process and it is administra-
tively enabled via "http://www.freebsd.org/
cgi/man.cgi?query=ifconfig%288%29"
ifconfig(8). As a result, each tap(4) interface
must be explicitly enabled each time a guest is
booted. This can be inconvenient for frequently
restarted guests. The tap(4) driver can be
changed to automatically enable an interface
when it is opened by a user process by setting
the net.link.tap.up on_open sysctl to 1.

Bridged Configuration

One simple network setup bridges the guest
network interfaces directly onto a network to
which the host is connected. On the host, a sin-
gle "http://www.freebsd.org/cgi/man.cgi?
query=if_bridge%284%29"if_bridge (4) inter-
face is created. The tap(4) interfaces for the
guest are added to the bridge along with the
network interface on the host that is attached
to the desired network. Example 1 connects a
guest using tap0 to a LAN on the host's re0
interface:

ifconfig bridge0 create
ifconfig bridge0 addm re0
ifconfig bridge0 addm tapO
ifconfig bridgeO up

*HHH

Example 1: Manually Connecting a Guest to the Host's LAN

The guest can then configure the VirtlO net-
work interface bound to tap0 for the LAN on
the host's re0 interface using DHCP or a static
address.

The /etc/rc.d/bridge script allows
bridges to be configured during boot automati-
cally by variables in /etc/rc.conf.

The autobridge interfaces variable lists
the bridge interfaces to configure. For each
bridge interface, an autobridge <name>
variable lists other network interfaces that
should be added as bridge members. The list
can include shell globs to match multiple inter-
faces. Note that /etc/rc.d/bridge will not
create the named bridge interfaces. They should
be created by listing them in the

cloned interfaces variable along with the
desired tap(4) interfaces. Example 2 lists the
/etc/rc.conf settings to create three tap(4)
interfaces bridged to a local LAN on the host's
re0 interface.

/etc/rc.conf

autobridge interfaces="bridge0"

autobridge bridge0="re0 tap*"

cloned interfaces="bridge0 tap0 tapl tap2"
ifconfig bridge0="up"

Example 2: Bridged Configuation
Private Network with NAT

A more complex network setup creates a private
network on the host for the guests and uses
network address translation (NAT) to provide
limited access from guests to other networks.

July/August 2014 | 21

usinG bhyve

This may be a more appropriate setup when the
host is mobile or connects to untrusted net-
works.

This setup also uses an if_bridge(4) interface,
but only the tap(4) interfaces used by guests are
added as members to the bridge. The bridge
members are assigned addresses from a private
subnet. The bridge interface is assigned an
address from the private subnet as well to con-
nect the bridge to the host's network stack. This
allows the guests and host to communicate over
the private subnet used by the bridge.

The host acts as a router for the guests to
permit guest access to remote systems. IP for-
warding is enabled on the host and guest con-
nections are translated via "http:/www.
freebsd.org/cgi/man.cgi?query=natd%288%29"
natd(8) The guests use the host's address in the
private subnet as their default route.

Example 3 lists the /etc/rc.conf settings
to create three tap(4) interfaces and a bridge
interface using the 192.168.16.0/24 subnet. It
also translates network connections over the
host's wlan0 interface using natd(8).

autobridge interfaces="bridge0"

autobridge bridge0="tap*"

cloned interfaces="bridge0 tap0 tapl tap2"
ifconfig bridge0O="inet 192.168.16.1/24"
gateway enable="YES"

natd enable="YES"

natd interface="wlan0"

firewall enable="YES"

firewall type="open"

22

/etc/rc.conf

‘ Example 3: Private Network Configuration

/usr/local/etc/dnsmasq.conf

domain-needed

bogus-priv

interface=bridge0
dhcp-range=192.168.16.10,192.168.16.200,12h

Example 4: Enabling dnsmasq's DNS and DHCP Servers

Using dnsmasq with a Private Network
The private network from the previous example
works well, but it is a bit tedious to work with.
Guests must statically configure their network
interfaces, and network connections between
guests and the host must use hardcoded IP
addresses. The "http://www.thekelleys.org.uk/
dnsmasg/doc.html"dnsmasq utility can alleviate
much of the tedium. It can be installed via the
"http://www.freshports.org/dns/dnsmasq/
"dns/dnsmasq port or as a prebuilt package.

FreeBSD Journal

The dnsmasg daemon provides a DNS for-
warding server as well as a DHCP server. It can
serve local DNS requests to map the hostnames
of its DHCP clients to the addresses it assigns to
the clients. For the private network setup, this
means that each guest can use DHCP to config-
ure its network interface. In addition, all of the
guests and the host can resolve each guest's
hostname.

The dnsmasqg daemon is configured by set-
tings in the /usr/local/etc/dnsmasq.conf
configuration file. A sample configuration file is
installed by the port by default. The configura-
tion file suggests enabling the domain-needed
and bogus-priv settings for the DNS server to
avoid sending useless DNS requests to upstream
DNS servers. To enable the DHCP server,
interface must be set to the network inter-
face on the host where the server should run,
and dhcp-range must be set to configure the
range of IP addresses that can be assigned to
guests.

Example 4 instructs the dnsmasq daemon to
run a DHCP server on the bridge0 interface
and assign a subset of the 192.168.16.0/24 sub-
net to guests.

In addition to providing local DNS names for
DHCP clients, dnsmasq also provides DNS names
for any entries in /etc/hosts on the host. An
entry to /etc/hosts that maps the IP address
assigned to bridge0 to a hostname
(e.g.,"host") will allow guests to use that host-
name to contact the host.

The last thing remaining is to configure the
host machine to use dnsmasq's DNS server.
Allowing the host to use dnsmasq's DNS server
allows the host to resolve the name of each
guest. The dnsmasqg daemon can use
"http://www.freebsd.org/cgi/man.cgi?query=
resolvconf%288%29 "resolvconf(8) to seamlessly
handle updates to the host's DNS configuration
provided by DHCP or VPN clients. This is imple-
mented by resolvconf(8) updating two configu-
ration files that are read by dnsmasq each time
the host's DNS configuration changes. Finally,
the host should always use
dnsmasq's DNS server and rely on it to forward
requests to other upstream DNS servers.
Enabling all this requires changes to both dns-
masq's configuration file and /etc/
resolvconf.conf. More details about config-
uring resolvconf(8) can be found in
"http://www.freebsd.org/cgi/man.cgi?query=
resolvconf.conf%285%29 "resolvconf.conf(5).
Example 5 gives the changes to both files to use
dnsmasq as the host's name resolver.

Running Guests via vmrun.sh
Executing a guest requires several steps. First, any
state from a previous guest using the same name
must be cleared before a new guest can begin.
This is done by passing the --destroy flag to
bhyvectl(8). Second, the guest must be created
and the guest's kernel must be loaded into its
address space by bhyveload(8) or grub2-bhyve.
Finally, the bhyve(8) program is used to create
virtual devices and provide runtime support for
guest execution. Doing this all by hand for each
guest invocation can be a bit tedious, so FreeBSD
ships with a wrapper script for FreeBSD guests:
/usr/share/examples/bhyve/

vmrun.sh

The vmrun.sh script manages a simple FreeBSD
guest. It performs the three steps above in a loop
so that the guest restarts after a reboot similar to
real hardware. It provides a fixed set of virtual
devices to the guest including a network inter-
face backed by a tap(4) interface, a local disk
backed by a disk image, and an optional second
disk backed by an install image. To make guest
installations easier, vmrun.sh checks the provided
disk image for a valid boot sector. If none is
found, it instructs bhyveload(8) to boot from the
install image, otherwise it boots from the disk
image. In FreeBSD 10.1 and later, vmrun.sh will
terminate its loop when the guest requests soft
off via ACPI.

The simplest way to bootstrap a new FreeBSD
guest is to install the guest from an install ISO
image. For a FreeBSD guest running 9.2 or later,
the standard install process can be used by using
the normal install ISO as the optional install
image passed to vmrun.sh. FreeBSD 8.4 also
works as a bhyve guest. However, its installer
does not fully support VirtlO block devices, so
the initial install must be performed manually
using steps similar to those from the
"https://wiki.freebsd.org/RootOnZFS" RootOnZFS
guide. Example 6 creates a 64-bit guest named
"vmQ" and boots the install CD for FreeBSD
10.0-RELEASE. Once the guest has been
installed, the -T argu-
ment can be dropped #
to boot the guest #
from the disk image. #

The vmrun.sh script
runs bhyve(8) synchro-
nously and uses its
standard file descriptors as the backend of the
first serial port assigned to the guest. This serial
port is used as the system console device for
FreeBSD guests. The simplest way to run a guest
in the background using vmrun.sh is to use a

mkdir wvmO

/usr/local/etc/dnsmasqg.conf

conf-file=/etc/dnsmasqg-conf.conf
resolv-file=/etc/dnsmasg-resolv.conf

/etc/resolvconf.conf

name_servers=127.0.0.1
dnsmasq conf=/etc/dnsmasg-conf.conf
dnsmasq resolv=/etc/dnsmasg-resolv.conf

Example 5: Use dnsmasq as the Host's Resolver

tool such as "http://www.freshports.org/
sysutils/screen"screen or "http://www.
freshports.org/sysutils/tmux" tmux.

FreeBSD 10.1 and later treat the SIGTERM sig-
nal sent to bhyve(8) as a virtual power button. If
the guest supports ACPI, then sending SIGTERM
interrupts the guest to request a clean shutdown.
The guest should then initiate an ACPI soft-off
which will terminate the vmrun.sh loop. If the
guest does not respond to SIGTERM, the guest
can still be forcefully terminated from the host
via SIGKILL. If the guest does not support
ACPI, then SIGTERM will immediately terminate
the guest.

The vmrun.sh script accepts several different
arguments to control the behavior of bhyve(8)
and bhyveload(8), but these arguments only per-
mit enabling a subset of the features supported
by these programs. To control all available fea-
tures or use alternate virtual device configura-
tions (e.g., multiple virtual drives or network
interfaces), either invoke bhyveload(8) and
bhyve(8) manually or use vmrun.sh as the basis
of a custom script.

Configuring Guests

FreeBSD guests do not require extensive configu-
ration settings to run, and most settings can be
set by the system installer. However, there are a
few conventions and additional settings which
can be useful.

Out of the box, FreeBSD releases prior to 9.3

truncate -s 8g vm0/disk.img
sh /usr/share/examples/bhyve/vmrun.sh -t tap0 -d vmO/disk.img \
-I FreeBSD-10.0-RELEASE-amd64-discl.iso vm0

Example 6: Creating a FreeBSD/amd64 10.0 Guest

and 10.1 expect to use a video console and key-
board as the system console. As such, they do
not enable a login prompt on the serial console.

July/August 2014

23

USING bhyve

24

“€ Once kgdb(1)
attaches to the
remote target,
it can be used to
debug the guest kernel 73

/etc/rc.conf

hostname="vm0" -
ifconfig vtnet0O="DHCP"
sshd enable="YES"
dumpdev="AUTO"
sendmail enable="NONE"

Example 7: Simple FreeBSD Guest Configuration

> cd ~/work/freebsd/head/sys/amd64/compile/GUEST
> make install DESTDIR=~/bhyve/vm0/host KMODOWN=john

> cd ~/bhyve
> sudo sh vmrun.sh -t tap0 -d vm0/disk.img -H vm0/host wvm0

OK unload

OK load host0:/boot/kernel/kernel

host0:/boot/kernel/kernel text=0x523888 data=0x79df8+0x10e2e8 syms=[0x8+0x9fb58+0x8+0xbafil]
OK boot

Copyright (c) 1992-2014 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.
FreeBSD is a registered trademark of The FreeBSD Foundation.
FreeBSD 11.0-CURRENT #6 r261528M: Fri Feb 7 09:55:45 EST 2014
john@pippin.baldwin.cx:/usr/home/john/work/freebsd/head/sys/amd64/compile/GUEST amd64

Example 8: Booting a Kernel from the Host.

A login prompt should be enabled on the serial
console by editing /etc/ttys and marking
the ttyu0 terminal "on." Note that this can be
done from the host after the install has com-
pleted by mounting the disk image on the host
using "http://Awww.freebsd.org/cgi/man.cgi?
query=mdconfig%288%29"mdconfig(8).

Note: Be sure the guest is no longer access-
ing the disk image before mounting its filesys-
tem on the host to avoid data corruption.

If a guest requires network access, it will
require configuration similar to that of a normal
host. This includes configuring the guest's net-
work interface vtnet0 and assigning a host-
name. A useful convention is to reuse the name
of the guest("vmO0" in Example 6) as the host-
name. The "http://www.freebsd.org/cgi/
man.cgi?query=sendmail%288%29"
sendmail(8) daemon may hang attempting to
resolve the guest's hostname during boot. This
can be worked around by completely disabling
sendmail(8) in the guest. Finally, most guests
with network access will want to enable remote

FreeBSD Journal

logins via "http://www.freebsd.org/cgi/
man.cgi?query=sshd%288%29"sshd(8).
Example 7 lists the /etc/rc.conf file for a
simple FreeBSD guest.

Using a bhyve Guest as a Target

One way bhyve can be used while developing
FreeBSD is to allow a host to debug a guest as
if the guest were a remote target. Specifically, a
test kernel can be built on the host, booted
inside of the guest, and debugged from the
host using http://Awww.freebsd.org/
cgi/man.cgi?query=kgdb%281%29 kgdb(1).
Once a guest is created and configured and a
test kernel has been built on the host, the next
step is to boot the guest with the test kernel.
The traditional method is to install the kernel
into the guest's filesystem either by exporting
the build directory to the guest via NFS, copying
the kernel into the guest over the network, or
mounting the guest's filesystem on the host
directly via mdconfig(8). An alternate method is
available via bhyveload(8) which is similar to
booting a test machine over the network.

Using bhyveload(8)'s Host
Filesystem d
The bhyveload(8) program allows a
directory on the host's filesystem to be
exported to the loader environment. This
can be used to load a kernel and mod-
ules from a host filesystem rather than
the guest's disk image. The directory on
the host's filesystem is passed to
bhyveload(8) via the -h flag. The
bhyveload(8) program exports a host0: o
device to the loader environment. The
path passed to the host0: device in the

3 STEPS for booting a test kernel

Install the kernel into the directory on the host by setting the
DESTDIR variable to the directory when invoking

make install ormake installkernel. A

non-root user with write access to the directory can perform this
step directly by setting the KMODOWN make variable to

the invoking user.

Pass the directory's path to bhyveload(8) either via the

-h flag to bhyveload(8) or the -H flag to vmrun.sh.

Explicitly load the new kernel at the bhyveload(8) prompt via the
loader path host0:/boot/kernel/kernel.

loader environment is appended to the
configured directory to generate a host path-
name. Note that the directory passed to
bhyveload(8) must be an absolute pathname.
The vmrun.sh script in FreeBSD 10.1 and later
allow the directory to be set via the —-H argu-
ment. The script will convert a relative path-
name to an absolute pathname before passing
it to bhyveload(8).

Booting a test kernel from the host inside of
the guest involves the above three steps:
Example 8 installs a kernel with the kernel con-
fig GUEST into a host directory for the guest

"vmQ". It uses vmrun.sh's —=H argument to
specify the host directory passed to
bhyveload(8). It also shows the commands used
at the loader prompt to boot the test kernel.
The guest can be configured to load a kernel
from the host0: filesystem on the next boot
using "http://www.freebsd.org/cgi/
man.cgi?query=nextboot%288%29"
nextboot(8). To boot the host0: /boot/
kernel/kernel kernel, run nextboot -e
bootfile=host0:/boot/kernel/kernel
before rebooting. Note that this will not adjust

The industry leader in Scale-Out Network Attached Storage (NAS)

Isilon is deeply invested in advancing FreeBSD
performance and scalability. We are looking
to hire and develop FreeBSD committers for
kernel product development and to improve
the Open Source Community.

With of fices around the world,
we likely have a job for youl
FPlease visit our website at
http://www.emc.com/careers
or send direct inquiries to
annie.romas@emc.com.

EMC’ 7hisico~

July/August 2014 | 25

USING bhyve

> sudo sh vmrun.sh -t tap0 -d vm0/disk.img -H vmO/host -g 1234 vm0

OK load host0:/boot/kernel/kernel

host0:/boot/kernel/kernel text=0x523888 data=0x79df8+0x10e2e8 syms=[0x8+0x9fb58+0x8+0xbafdl]
OK boot

Booting...

GDB: debug ports: bvm

GDB: current port: bvm

root@vm0O:~ # sysctl debug.kdb.enter=1
debug.kdb.enter: OKDB: enter: sysctl debug.kdb.enter
[thread pid 693 tid 100058]

Stopped at kdb sysctl enter+0x87:
db> gdb

(ctrl-c will return control to ddb)
Switching to gdb back-end

Waiting for connection from gdb

-> 0

root@vm0:~ #

movq $0,kdb why

Example 9: Using kgdb(1) with bvmdebug: In the Guest

> cd ~/work/freebsd/head/sys/amd64/compile/GUEST
> kgdb kernel.debug

(kgdb) target remote localhost:1234

Remote debugging using localhost:1234

warning: Invalid remote reply:

kdb sysctl enter (oidp=<value optimized out>, argl=<value optimized out>,

arg2=1021, reg=<value optimized out>) at ../../../kern/subr kdb.c:446
446 kdb why = KDB WHY UNSET;
Current language: auto; currently minimal
(kgdb) c
Continuing.

Example 10: Using kgdb(1) with bvmdebug: On the Host

the module path used to load kernel modules,
so it only works with a monolothic kernel.

Using bhyve(8)'s Debug Port

The bhyve(8) hypervisor provides an optional
debug port that can be used by the host to
debug the guest's kernel using kgdb(1). To use
this feature, the guest kernel must include the
bvmdebug device driver, the KDB kernel
debugger, and the GDB debugger backend.
The debug port must also be enabled by pass-
ing the —g flag to bhyve(8). The flag requires
an argument to specify the local TCP port on
which bhyve(8) will listen for a connection from

26 | FreeBSD Journal

kgdb(1). The vmrun.sh script also accepts a —g
flag which is passed through to bhyve(8).
When the guest boots, its kernel will detect
the debug port as an available GDB backend
automatically. To connect kgdb(1) on the host
to the guest, first enter the kernel debugger by
setting the debug.kdb.enter system control
node to a non-zero value. At the debugger
prompt, invoke the gdb command. On the
host, run kgdb(1) using the guest's kernel as
the kernel image. The target remote com-
mand can be used to connect to the TCP port
passed to bhyve(8). Once kgdb(1) attaches to
the remote target, it can be used to debug

“‘ The bhyve(8) hypervisor provides an optional
debug port that can be used by the host to debug
the guest's kernel using kgdb(1).??

the guest kernel. Examples 9 and 10 demon-
strate these steps using a guest kernel built on
the host.

Using kgdb(1) with a Virtual Serial Port
A serial port can also be used to allow the host
to debug the guest's kernel. This can be done
by loading the "http://www.freebsd.org/cgi/
man.cgi?query=nmdm %284%29"nmdm(4)
driver on the host and using a nmdm(4) device
for the serial port used for debugging.

To avoid spewing garbage on the console,
connect the nmdm(4) device to the second seri-
al port. This is enabled in the hypervisor by
passing -1 com2, /dev/nmdmO0B to bhyve(8).
The guest must be configured to use the sec-
ond serial port for debugging by setting the
kernel environment variable
hint.uart.1l.flags=0x80 from
bhyveload(8). The kgdb(1) debugger on the

host connects to the guest by using target
remote /dev/nmdmOA.

Conclusion

The bhyve hypervisor is a nice addition to a
FreeBSD developer's toolbox. Guests can be
used both to develop new features and to test
merges to stable branches. The hypervisor has a
wide variety of uses beyond developing
FreeBSD as well.

John Baldwin joined the FreeBSD Project as
a committer in 1999. He has worked in sev-
eral areas of the system, including SMP
infrastructure, the network stack, virtual
memory, and device driver support. John
has served on the Core and Release
Engineering teams and organizes an annual
FreeBSD developer summit each spring.

™

) (a

7

wa
w o July/August 2014
URNAL

1 e lssu

AVAILABLE AT
YOUR FAVORITE
APP STORE NOW

(11
It’'s Awesome! This publication is the best
way to popularize FreeBSD!!” _ san Jose, CA

1
I’ve found it so practical, and great
reading...it caters to all levels.” — Brooklyn, NY

(13
The content is SO GOOD! Everyone
involved in BSD should read FreeBSD
Journal!”_ Austin, TX

FreeBSEHournAL

www.freebsdfoundation.org

£ Download on the
[¢ App Store

Available at

ANDROQID APP ON
P> Google play

s amazon
1 YEAR $19.99 * SINGLE COPIES $6.99 EACH

