
14 FreeBSD Journal

T HE XEN HYPERVISOR started at the University of Cambridge Computer
Laboratory in the late 1990s under the project name Xenoservers. At that time,

Xenoservers aimed to provide “a new distributed computing paradigm, termed 'global
public computing,' which allows any user to run any code anywhere. Such platforms
price computing resources, and ultimately charge users for resources consumed”.

Given this goal, it is clear, Xen was designed for the cloud even before the cloud was
created. Today Xen technology powers the biggest enterprise clouds in production,
including Amazon EC2, RackSpace, and Verizon Terramark.

Using a hypervisor allows sharing the hardware resources of a physical machine
among several OSes in a secure way. The hypervisor is the piece of software that man-
ages all those OSes (usually called guests), and provides separation and isolation
between them.

First released in 2003 as an open-source hypervisor under the GPLv2, Xen's design is
OS agnostic, which makes it easy to add Xen support into new OSes. Since its first
release more than 10 years ago, Xen receives broad support from a large community of
individual developers and corporate contributors.

The Architecture
Hypervisors can be divided into two categories:
Type1—those that run directly on bare metal
and are in direct control of the hardware, and
Type2—hypervisors that are part of an operat-
ing system. Common Type1 hypervisors are
VMware ESX/ESXi and Microsoft Hyper-V, while

VMware Workstation and VirtualBox are clear
examples of Type2 hypervisors.

Xen is a Type1 hypervisor with a twist—its
design resembles a microkernel in many ways.
Xen itself only takes control of the CPUs, the
local and IO APICs, the MMU, the IOMMU and
a timer (either HPET or PIT). The rest is taken
care of by the control domain (Dom0), a spe-

BY
ROGER

PAU MONNE’

X
E
N

July/August 2014 15

cialized guest granted elevated privileges by
the hypervisor. This allows Dom0 to manage
all other hardware in the system, as well as all
other guests running on the hypervisor. It is
also important to realize that Xen contains
almost no hardware drivers, preventing code
duplication with the drivers already present in
OSes (See figure 1).

The Guests
Because Xen was designed back when x86 did-
n’t have the hardware features it has now, it is
able to offer several different virtualization
modes. In the late 1990s, there were only two
options to use virtualization on x86, both with
very high overhead—full software emulation or
binary translation. To overcome this, Xen took a
new approach. We made the guest aware that
it was running inside a virtualized environment
and provided a whole new interface that
removed the extra overhead. This led to what is
known today as paravirtualization (PV), and
replaced the following interfaces with PV-aware
implementations:
• Disk and network
• Interrupts and timers
• Boot process, the guest starts directly in the

mode it wishes to run (either 32 or 64 bits)
• Page tables
• Privileged instructions

Some of the interfaces listed above are easy
to implement and are not intrusive regarding
the guest OS, such as PV disks and nics. On
the other hand, some are really intrusive, such
as the replacement of the native page table
implementation.

A couple of these interfaces are worth
explaining in more detail, like the paravirtualiza-
tion of interrupts. PV guests are not allowed to
use native interrupts, so a new technique called
event channels was introduced to replace them.
Event channels use a single entry point into the
guest kernel to inject interrupts, and there's a
shared memory region between Xen and the
guest to signal which event has fired. All inter-
rupts are routed over this interface when run-
ning as a Xen PV guest.

Another important technique used by Xen
guests is the hypercall page. This is a memory
page in the guest OS that's filled by Xen and
contains the hardware-specific hypercall imple-
mentations. Hypercalls are much like system
calls between user-space and kernel-space in
OSes, but in this case the hypercall is between

FIGURE 1
xen architectural overviewCONTROL DOMAIN

HARDWARE

XEN HYPERVISOR

�

device model
(QEMU)

toolstack

hardware
driver

netback
blkback

Paravirtualized
(PV) Domain Fully

Virtualized
(HVM)

Domain
netfront
blkfront

I/O Devices CPU Memory

�

�

�

16 FreeBSD Journal

the guest kernel and the hypervisor itself.
Hypercalls are the only way a guest OS is able
to communicate with the Xen hypervisor.

With the introduction of hardware virtual-
ization extensions in x86 in 2005, Xen gained
the ability to run unmodified guests in
Hardware Virtual Machine (HVM) mode. This
was a very important step because it allowed
Xen to run guests without any PV-aware inter-
faces. In order to do this, a device model is
needed (which usually runs in Dom0) that
emulates the devices provided to the guest. All
this emulation is handled by Qemu, which was
adapted to work with Xen.

Using device models is expensive for both
the Dom0 and the guest. Since each guest
needs its own Qemu instance if all of them are
running on Dom0, it can easily become a bot-
tleneck in terms of CPU and memory usage.
From a guest point of view, it also adds more
overhead when compared to using PV inter-
faces only, because accesses to these emulated
devices cause traps into Qemu.

While this separation between PV and HVM
guests makes a clear cut, there have been sev-
eral PV-specific improvements made available
to HVM guests to obtain better performance.
HVM guests can make use of PV disks and nics
to boost IO throughput. When a guest makes
use of those interfaces inside an HVM contain-
er, it is known as HVM with PV drivers in the

Xen argot. But it doesn't stop here, since Xen
4.1, a HVM guest, can also use PV timers and
PV IPIs to reduce even more emulation over-
head. When a guest runs in this mode, it's
known as PVHVM.

In general, HVM guests have better per-
formance, especially regarding page table
manipulation operations. The software page
table manipulation used in PV guests is one of
the main performance problems of pure PV
guests. To improve this, a new mode has been
recently introduced that allows PV guests to
run inside HVM containers. This new mode is
called PVH and makes use of the hardware vir-
tualization extensions for the CPU and MMU,
while using PV interfaces for the rest. Figure 2
contains a table that shows the differences
between the several guest modes supported
by Xen.

New Features
In XEN 4.4
Apart from the usual round of bug fixes and
across-the-board improvements, the latest
release of Xen includes several improvements
worth mentioning. On the tools side, the
default Xen toolstack (libxl) offers improved
libvirt support. This lays the foundation for
solid integration into any tools that can use lib-

Figure 2
THE VIRTUALIZATION SPECTRUM

DISK
 &

 N
ET

W
ORK

IN
TE

RR
UPT

S
& T

IM
ER

S
EM

ULA
TE

D M
OTH

ER
BO

ARD

PR
IV

ILE
GED

 IN
ST

RU
CTIO

NS

& PA
GE

TA
BL

ES

SOFTWARE VIRTUALIZATION

HARDWARE VIRTUALIZATION

PARAVIRTUALIZED

POOR PERFORMANCE

ROOM FOR IMPROVEMENT

OPTIMAL PERFORMANCE

VS

VH

PV

HVM

HVM with PV Drivers

PVHVM

PVH

PV

VS VS VS

VS

VS

PV

PV

PV

PV

PV

PV

PV

VS

PV

PV PV

VH

VH

VH
VH

July/August 2014 17

virt, from GUI VM managers to cloud orchestra-
tion layers like CloudStack or OpenStack.

The Xen on ARM port also saw a number of
improvements, as now Xen is able to both run
on ARM 64-bit hardware and also support
ARM 64-bit guests. The ARM ABI (the interface
between the guests and the hypervisor) has
also been declared stable, which means all
changes will be done in a backwards compati-
ble fashion, and ARM guests using the Xen 4.4
interface can rest assured this will continue to
work on newer releases. Also this release
added support for many new boards including
Arndale, Calxeda ECX-2000, Applied Micro X-
Gene Storm, TI QMAP5 and Allwinner
A20/A30. There's already ongoing work to port
FreeBSD as both a guest and a Dom0 for Xen
on ARM.

One of the most interesting 4.4 features rel-
evant to FreeBSD is the new virtualization mode
called PVH. Xen 4.4 has experimental support
for running non-privileged guests in PVH mode,
with Dom0 PVH support coming in Xen 4.5.
This new virtualization mode is very similar to
PVHVM, a mode FreeBSD can run as of
FreeBSD 10, but removes the need for any soft-
ware emulation at all. This means there's no
need to run a device model in order to run a
PVH guest (something that is needed for
PVHVM guests). Since PVH doesn't require a
device model to run, it can also be used as
Dom0, something that until now was only pos-
sible with pure PV guests.

PVH guests make heavy use of the hardware
virtualization extensions found in current
processors as it runs inside a HVM container
and has access to a hardware-virtualized CPU
and MMU, which means there are no PV inter-
faces for page table manipulation or privileged
instruction execution. As said before, one of
the hardest things about adding PV support
into an OS is the fact that the virtual memory
subsystem has to be rewritten or completely
filled with hooks for Xen, which is both hard to
design and hard to maintain. Apart from the
simplification of the PV interface, PVH is also
much faster regarding page table manipula-
tions, since using the hardware-virtualized
MMU is certainly faster than using the PV
MMU. Although originally designed with per-
formance in mind, PVH has turned out to be a
very important feature for FreeBSD, greatly sim-
plifying the path from PVHVM to being able to
run as a Dom0. This means that FreeBSD can
bypass all the pain of implementing PV MMU
support without any downsides. Performance
of PVH is better than the performance of pure

PV, and it will also allow FreeBSD to run as
Dom0. Due to all these benefits, it is very likely
that the embryonic i386 PV port will be
removed in favor of PVH.

XEN Support
In FreeBSD 10
The 10 release cycle was quite interesting in
terms of new Xen features. The FreeBSD/Xen
port status in 9 included support for running as
a uniprocessor 32-bit PV guest and as a HVM
guest with PV drivers for both disk and nics.
Most of the work during the last release
focused on getting FreeBSD to run as a PVHVM
guest and also improving the performance and
features of the PV drivers. To run as a PVHVM
guest, several under-the-hood improvements
were done, and while those are not quite visi-
ble from a user point of view, they were crucial
to getting us where we are now.

One of the first and most important
improvements is the change in how event
channel interrupts are injected and handled in
FreeBSD. In previous releases, events for all
event channels were signaled to the guest via a
single, global PCI interrupt. This is simple and
works fine if the guest is only using event chan-
nels for a few PV disk and nic devices. However
it scales poorly since all event channel process-
ing is tied to a single interrupt, running on a
single CPU. In order to solve this limitation,
support for Xen's newer event delivery scheme
was added to FreeBSD. Known as "vector call-
back," Xen allows the guest to allocate an IDT
vector for each event channel. Since Xen can
inject an IDT event to a specific CPU, this allows
full distribution of interrupt load across all
CPUs. It also makes it possible to efficiently
implement new, per-cpu, device types that are
paravirtualized.

Thanks to the introduction of the vector call-
back, it is possible to use the PV timer. This
timer is implemented as a one-shot-per-cpu
event timer that is set using hypercalls and is
delivered to the guest using an event channel
interrupt. This removes the overhead of using
the emulated timers, which comes from the
fact that you need to perform reads and writes
to the emulated devices registers, which cause
VMEXITs into Xen. A VMEXIT is an involuntary
trap into the hypervisor that involves a context
switch. As with any context switch, the saving
and restoring of execution state is costly and
should be avoided when possible. VMEXITs
occur anytime a guest attempts a privileged

18 FreeBSD Journal

operation: accessing certain registers, executing
certain instructions, or accessing a memory
location being managed by the hypervisor, like
the memory of devices emulated by Xen.

By using the PV timer only one VMEXIT is
taken when issuing the hypercall to set the
timer. Xen also provides a shared memory region
that contains a lot of time-related information.
In addition to setting the PV timer, this informa-
tion is also used to create a time counter and to
provide a clock implementation for FreeBSD. As
we can see, we can solve all the OS time-related
needs using PV interfaces only.

Another improvement that was made to
reduce the emulation overhead is to route inter
processor interrupts (IPIs) over event channels.
On native x86 hardware, IPIs are delivered using
the local APIC, but again when running on a vir-
tualized environment, accesses to the local APIC
cause VMEXITs into Xen, which ideally we like to
avoid. This is solved by using event channel inter-
rupts to deliver these signals between processors,
which greatly reduced the latency of IPIs. Here
again we turn multiple VMEXITs into a single
hypercall, reducing the emulation overhead.

PVH Support
in Head
Since PVH is very similar to PVHVM in terms of
the PV interfaces used, getting PVH support
into FreeBSD was not a big deal. The main dif-
ference between PVHVM and PVH is that PVH
uses the PV start sequence. This means that
there are no emulated BIOS, and the guest is
started by directly jumping into the kernel entry
point with some basic page tables already set

up by Xen on behalf of the guest. The FreeBSD
i386 PV port already had this entry point; how-
ever most of the code there was not suitable
for PVH, due to it being a fork of the i386
machdep code with the Xen-specific implemen-
tation hardcoded in it. We wanted to avoid this
as much as possible, since the original idea was
to have PVH support in the GENERIC kernel, so
that the user would not be required to compile
a custom kernel, and could use freebsd-update
inside of a PVH guest without problems.

So the first step was to add the PV entry
point and some elf notes that are used by Xen
in order to know how to load the kernel. This is
quite straightforward, and only requires a cou-
ple of assembly lines. After that, a specific Xen
initialization function is called that sets the
page tables as FreeBSD expects to find them (as
set by the boot trampoline on native amd64).
This function also initializes a couple of Xen-
specific global variables with data provided by
the hypervisor at boot time.

After that, the native FreeBSD initialization
function is called, which has also been slightly
tweaked to prevent it from using any emulated
devices. Instead of adding a bunch of Xen-spe-
cific conditionals in common code, another
approach was taken: strategically placed hooks
that allow the runtime selection of the proper
support code. By default, the hooks point to
the native hardware implementation. But if Xen
PVH mode is detected, the Xen code is activat-
ed. The early initialization hooks provide a
dynamic way to change the clock source used
during early bootstrap (8259 PIC vs. hypercall)
and the method for fetching the hardware
memory map (E820 vs. hypercall).

As PVH guests don't have a local APIC, the

XEN
NEXUS

EVENT
CHANNELS

x
en

pv
 bu

s

PV CPU

grant-table

xenstore

timer

console

privcmd

evtchn

control interface

disk0

nic0

FIGURE 3
FreeBSD/XEN Driver Structure

July/August 2014 19

way to start the secondary CPUs is also different
from native, so another hook had to be added to
implement a PVH specific method to start them.
On PVH, the way to start secondary CPUs is quite
easy (less convoluted than on native I would say),
and basically involves setting the initial values of
the registers and starting the CPU. This removes
the need for any kind of trampoline to set up the
page tables, since the CPU is started directly with
paging enabled.

Finally all the local APIC-related functions have
been converted into hooks, which allows Xen-spe-
cific overrides for some of them. Most of them
should never be called when running as a PVH
domain (because there's no local APIC) so some
asserts have been added to make sure no other
subsystem tries to use them.

The addition of PVH support also included
some major rework of how the Xen code is
structured in FreeBSD. Until now, all top-level
Xen devices were directly attached to the Nexus.
With the introduction of PVH support, the code
has been structured in a more hierarchical way
by introducing a Xen-specific bus that all top-
level Xen devices hang from. Figure 3 shows
how the new xenpv bus is structured, and how
descendant devices are organized. Top-level Xen
devices include the PV console, the PV timer,
and xenstore. Xenstore is a very important com-
ponent in PVH guests, because all the hardware
description comes from it (there are no ACPI
tables in PVH). As seen on the diagram, the PV
disks and nics hang off xenstore.

Since there is no ACPI on PVH, FreeBSD was
falling back to the legacy Nexus implementation.
This is not desirable, because it attaches a bunch
of buses not present on PVH. So a very simple
Xen-specific Nexus is provided in the PVH case
that fills this role. Finally, two device drivers were
added: the evtchn device, which allows user-
space applications to bind event channels, and
the privcmd device, present only when running
as Dom0, that is used to send management com-
mands from user-space to the hypervisor.

The Future
With PVH support already merged in HEAD, the
work has now shifted to PVH Dom0 support.
Running as Dom0 is quite different from run-
ning as a guest. One of the main differences is
that Dom0 has access to the physical hardware,
and so it must manage it. But it's not identical
to running on bare metal. Two examples of the
many differences are physical hardware inter-
rupts delivered via Xen event channels, and the

guest’s need to set up its physical interrupts
using hypercalls.

This might sound very convoluted, but it's
actually not that difficult. Xen provides hyper-
calls that allow Dom0 to set up IO APIC, MSIs
and MSI-Xs interrupts in an easy way and with-
out having to deal with the underlying hard-
ware. Again, all of this has been implemented
with hooks into the existing code, using the
infrastructure provided by newbus, which makes
it trivial to replace certain methods with their
Xen counterparts. Thanks to this interface, no
changes are required to drivers at all.

Regarding the Xen-specific code, some modi-
fications are needed to xenstore in order to run
as Dom0. Xenstore is an information storage
space shared between domains maintained by
the xenstored application. When running as a
guest, xenstore contains the hardware descrip-
tion for the domain and is always accessible, but
that's not the case for Dom0, since xenstore has
not yet been started.

So in Dom0 we have to allow the boot
process to skip the xenstore initialization until
the daemon has actually been started, and we
have to prevent any Xen kernel driver from try-
ing to use xenstore until it is actually running.
That's solved by not attaching the xenstore bus
until the process has been launched, and thanks
to the hierarchical structure of the Xen compo-
nents in FreeBSD, it's easy to accomplish: just
hold off attaching any driver that hangs off xen-
store until it is actually initialized.

FreeBSD already has the necessary drivers for
providing network and disk services to guests.
Thanks to that, there's not much work to do.
Some of those backends haven't seen much
use, so they will probably need some fine tun-
ing, but that's much less work than actually
writing them from scratch.

Dom0 support is still in its early stages, but
overall it looks very promising. FreeBSD is heavily
focused on performance, especially IO perform-
ance, which is exactly what Dom0 needs, since
it usually runs a bunch of PV backends to serve
requests from guests. Having cutting-edge fea-
tures like ZFS and Netmap inside the kernel is
certainly going to make FreeBSD a very interest-
ing OS within the Xen Project ecosystem. •

Roger Pau Monné is a Software Engineer at
Citrix and a FreeBSD developer. He usually
contributes to the Xen Project and the
FreeBSD/Xen port, and right now is mainly
focused on getting stable PVH support in
both projects.

