
4 FreeBSD Journal

With the upcoming release of PC-BSD/
TrueOS 11.0 in 2016, we have begun
the process of migrating to some new
tools and utilities that come bundled
with the system. Some of the major
ones include switching back to Free-
BSD’s boot-loader (away from GRUB),
moving to the Lumina Desktop as our
primary environment, and converting
from the Warden jail management
utility over to iocage. In this article we
will be taking a more-in-depth look at
iocage, how it compares to Warden,
and the reasons for the move.

By Kris Moore
& Brandon
Schneider

Migrating
Jail Management from Warden to

iocage

For the past six years, PC-BSD has included its own in-house-devel-
oped jail management utility, “The Warden.” This utility was imple-
mented in shell, with almost no dependencies apart from the base
FreeBSD system. It provided an easy-to-use interface (with an
optional Qt-based GUI) to create and perform basic management
of jails. However, since its original inception, jail management has
continued to evolve both on FreeBSD and via other jail manage-
ment utilities. Concepts such as “base-jails” became popular as a
mechanism for updating the underlying FreeBSD base-system on
multiple jails simultaneously, and ZFS was rapidly becoming the file
system of choice for its unique jail management possibilities.

While the Warden utility did eventually add ZFS functionality, it
was still very much designed around the concept of using UFS as
the underlying file system. This was reflected internally in much of
the code, covering just about every major piece of functionality,
which began to hinder further development. This was particularly
troublesome, since PC-BSD had become a “ZFS-only” system in
2013 and was migrating much of its toolchain to understand and
use ZFS functionality in unique ways. In the winter of 2014, it was
apparent that either a rewrite was in order or that Warden would
need to be replaced with a more modern tool going forward.

When we began looking around at the market, there were multi-
ple other jail management systems to evaluate, from ezjail, qjail,
cbsd, and more. However, when we began looking at iocage, it was
quickly apparent that it already had nearly all the features and
design details we desired in a next-gen jail manager. First, like
Warden, it was written entirely in shell, with no external dependen-
cies that bring in additional complexity, and it used a very similar
“Warden-like” command-line syntax. In addition to its native shell
implementation, it also was designed from the ground up to func-
tion only on ZFS. From using ZFS properties for jail settings, to tak-
ing advantage of snapshots, clones, and other native ZFS features,
iocage was already far ahead of the Warden’s ZFS functionality. In
addition, iocage also supported the “base-jail” concepts, made
popular by ezjail, giving us the best of all features in a single jail
management tool.

With the decision to switch to iocage for the upcoming PC-BSD
11.0 in 2016, we have already begun the process for end users. In
version 10.2 (summer 2015) the iocage utility was included along-
side the legacy version of the Warden. This was done to give users

Nov/Dec 2015 5

Why iocage?

S E E
T E X T
O N LY

6 FreeBSD Journal

and developers time to play with the new utility
for a period before the conversion takes place. A
migration utility will become available this fall,
which allows moving Warden existing jails to
iocage automatically, and will then be included in
11.0-RELEASE.

Since iocage is a command-line tool, we are
also currently in development of a new GUI that
will replace the original Warden Qt UI. The new
GUI in development is web-based as a part of
the AppCafe project, with the goal of being use-
ful both in a desktop such as PC-BSD and a serv-
er-based headless system such as FreeNAS or
TrueOS. This new AppCafe interface is under
heavy development at the moment, with a
planned release for FreeNAS 10 and PC-BSD 11.0
in 2016. Aside from its support for system pack-
age management (via pkgng), the new AppCafe
will also be using iocage exclusively to deal with
jails in a few unique ways.

In a more traditional jail management role, the
AppCafe web-interface will act as a front-end to
iocage directly, giving easy control for creating,
removing, and performing basic management of
jails. Since Brandon Schneider (iocage co-devel-
oper, alongside the original author, Peter Toth)
joined us at iXsystems in 2015, some new fea-
tures have been added to iocage that make cre-
ating and distributing jails much easier than
before. The new mechanism for jail distribution
uses the VCS tool “git” to do the initial checkout
of a prebuilt jail environment ready for execution.
This allows content creators to easily create jails
using pkgng or other methods, then commit and
push their changes to a public git server, such as
GitHub. From there clients can run a single
iocage command to fetch this jail repo to their
local box and begin execution. This new model
will become the basis of the AppCafe “App
Cages” feature, which will let us bundle applica-
tions such as Plex Media Server and others in a
ready-to-run fashion. Additionally, it provides
unique ways to verify updates and view diffs/logs
of changes in a readily understood fashion using
git. These features are already in a working state
and included in the PC-BSD 11.0-CURRENT
branch releases, giving developers and users an
early preview of what is coming for the 11.0-
RELEASE.

iocage Primer/
Inside iocage Internals
A quick primer on how iocage functions. Firstly,
we use ZFS properties to configure everything we
do. We have no configuration file, the only
exception being enabling the service in rc.conf.
Most of iocage’s nomenclature is kept consistent
with ZFS’s. We try to stay the same when the
function is something both ZFS and iocage sup-
port. For the rest of the commands, we go with
what we think is most self-explanatory. Our jail
naming uses a randomly generated UUID, so we
can avoid any naming conflicts.

Let’s get started with the tool! If you have
multiple zpools, then iocage will pick the first
one it finds. So we normally do an ‘iocage acti-
vate POOL’ to begin with. We use what are
called “bases.” These bases are the RELEASEs
you have fetched with iocage and form the basis
of our basejails. In this example, we will use
10.2-RELEASE. To fetch it we issue an ‘iocage
fetch release=10.2-RELEASE” and let iocage do
its job. When it’s finished, we have a new base
ready to be used. While the terminology for
fetching and creating differ for specifying which
version of FreeBSD you want to use, it’s because
once a RELEASE is fetched, the meaning has
changed for iocage.

So we have picked a pool to use for iocage,
and fetched a RELEASE. All that’s left is to create
a jail. Like ZFS, we allow the user to specify prop-
erties they would like to set during creation. For
this example, we will be using a static IP and
assigning the jail a name, which we call a “tag.”
Here we go! Type ‘iocage create tag=“example”
ip4_addr=“DEFAULT|192.168.1.100/24”
base=“10.2-RELEASE”‘. That will create a jail
named “example,” and give it the IPv4 address
192.168.1.100. The “DEFAULT” is a special key-
word that tells iocage to figure out the default
interface to use. We specify the base in this
instance, but iocage will default to the version
your host machine is running. This jail will use
what we call “shared networking mode.” The
other type you can use is VIMAGE, which is a vir-
tual networking stack that is quite versatile. IPv6
is also supported for both modes.

Since our jail is now created, let’s start it.
‘iocage start example’ and the jail will come right
up. We can verify it’s running with ‘iocage list’ or
‘iocage get state example’. Which looks like this:

~% iocage list
JID UUID BOOT STATE TAG TYPE
1 89b2f41a-76b2-11e5-8df9-d05099728dbf off up example basejail

The jail is now started—time to add a pkg!
Simply running ‘iocage console example’ will log
us right into the jail and allow us to start interact-
ing with it as if it was a physical machine. In this
instance, that means installing a pkg. So we can
do ‘pkg install tmux’ and, shortly after, we have
tmux installed in a jail. It’s really that easy. iocage
allows for a lot of advanced-usage scenarios and
all other sorts of things. For that, I encourage you
to read our manpage and visit our documenta-
tion: https://iocage.readthedocs.org/en/latest/
index.html.

That covers the primer for using iocage.
As a tool, we aim to be very user friendly, even

if you have never used jails before. Having prior
jail knowledge is certainly a plus. Any question
you may have can be answered on our Google
Group: https://groups.google.com/forum/
#!forum/iocage.

Deep Dive
Now it’s time to do a bit of a deep dive into the
latest work on iocage, which is a total rewrite of
our basejails. We call them “basejails,” because
they use a common shared base that is faster and
easier for a user to update. This also has the ben-
efit of substantial space savings. Our basejails
have become our default jail type now in the lat-
est development version.

Our basejail structure is pretty straightforward.
In iocage we have the jail that lives in
‘/iocage/jail/UUID/root’. UUID will be replaced
with whatever UUID was generated during your
jail creation. Mine for this example is “89b2f41a-
76b2-11e5-8df9-d05099728dbf,” as every one is
unique. Since these are read-only mounts, the
user cannot manipulate that data. We use the
excellent unionfs file system to mount them as an
overlay, allowing the user to add files, change
files that existed, and even remove files, all with-
out touching the read-only layer—unionfs is pret-
ty magical. We do this by having our read-write
mounts located in the directory called “_”. This is
the list of directories used with the basejails and
where they get mounted:

Once the jail has been started, those directo-
ries are mounted and using it is identical for the
user.

One thing I have mentioned is tags, and I
haven’t elaborated on what they mean to you,
the user. Tags allow you to name a jail so that
you’re able to interact with it using iocage and
do not have to remember the UUID. But if you
prefer to use the UUIDs, you are welcome to do
so! This means you can do every operation by
simply using a tag. Tags are very convenient and I
would suggest using them. If a tag is not sup-
plied during creation, the tag will be the date the
jail was created. This also applies to you if you’re
a user who would like to copy some files into a
jail before it’s started, or remove some once it is
stopped. For our example I can change my direc-
tory to ‘/iocage/tags/example/_’ instead of
‘/iocage/jails/ 89b2f41a-76b2-11e5-8df9-
d05099728dbf/_’. It saves a lot of typing!

How We Use ZFS
One of the last things we will touch on with
iocage is how we actually use ZFS. Every one of
our jails has its own ZFS dataset. This allows you
to take the jail, move it to a different system, and
iocage will know just what to do when you use
it. So when you set a property for the jail with
‘iocage set prop=value’, we are actually changing
the ZFS properties on the jail’s dataset. That
means all the settings for each jail follow it
around wherever you go, even with a brand new
install of iocage that has another machine’s disks
that were previously used with iocage on that
machine. This is really handy when you’re moving
zpools from host to host and you don’t want to
reconfigure your setup.

We also allow snapshotting of a jail. You can
supply a snapshot name when you call ‘iocage
snapshot’. So this means you can do ‘iocage
snapshot -r example@before’ which will recur-
sively take a snapshot of the jail. This allows you
to roll the jail back to whatever point in time you
made that snapshot. This has the benefit of get-
ting your jail configured when you don’t want to

_/etc � /iocage/jails/89b2f41a-76b2-11e5-8df9-d05099728dbf/root/etc

_/root � /iocage/jails/89b2f41a-76b2-11e5-8df9-d05099728dbf/root/root

_/usr/home � /iocage/jails/89b2f41a-76b2-11e5-8df9-d05099728dbf/root/usr/home

_/usr/local � /iocage/jails/89b2f41a-76b2-11e5-8df9-d05099728dbf/root/usr/local

_/usr/ports � /iocage/jails/89b2f41a-76b2-11e5-8df9-d05099728dbf/root/usr/ports

_/var � /iocage/jails/89b2f41a-76b2-11e5-8df9-d05099728dbf/root/var

Nov/Dec 2015 7

lose whatever state it was in before. You can tin-
ker with peace of mind. You can also mount
these snapshots and explore them, which can be
invaluable.

iocage tries to leverage everything it can with
ZFS as it is a very powerful file system. This
means you can even clone your jails or make
templates out of them. All of this only takes up
the differential space, which means you can
freely experiment without having to worry.
Templates are a feature that let you configure a
jail just how you’d like it and make many more
jails off of that template. This is going to be easi-
er soon, as we will introduce batch jail creation
to the tool. This will allow you to have a consis-
tent naming scheme and customized jail base,
and be able to have them numbered.

Hopefully this has given you a good idea of
what iocage can offer and makes you want to

learn more. As iocage is very flexible, there are
simply too many use-cases to cover in this article.
We love hearing the cool ways the tool is used,
so feel free to show us your setup. Version 2.0
brings a lot of new, exciting things to iocage.
Just some of the goodies coming soon are:

� Plugins
� A brand new basejail implementation
� Rewrites of many things such as snapshot,
import/export, cloning, templates
� Ability to easily mount ports, src, and linprocfs
� Batch jail creation
� and a whole lot more!

There are a lot of other fun things iocage can do,
and we invite you to try them yourself!

https://github.com/iocage/iocage

KRIS MOORE is the founder and lead developer of the PC-BSD project. He is also the co-host of the
popular BSD Now (bsdnow.tv) video podcast. When not at home programming, he travels around the
world giving talks and tutorials on various BSD-related topics at Linux and BSD conferences alike.
He currently lives in Tennessee (USA) with his wife and five children and enjoys video gaming in his
(very limited) spare time.
BRANDON SCHNEIDER is one of the two developers for the iocage project. He currently lives in
Minnesota (USA). During his free time, he enjoys playing and talking about gaming and anything
related to technology. He can be reached on Twitter @bschneider0922.

I S I L O N The industry leader in Scale-Out Network Attached Storage (NAS)

With offices around the world,
we likely have a job for you!
Please visit our website at
http://www.emc.com/careers
or send direct inquiries to
karl.augustine@isilon.com.

We’re Hiring!
We’re Hiring!

Isilon is deeply invested in advancing FreeBSD
performance and scalability. We are looking
to hire and develop FreeBSD committers for
kernel product development and to improve
the Open Source Community.

8 FreeBSD Journal

