
16 FreeBSD Journal

et’s begin with my own FreeNAS experience. In October
2005, I was looking for a small FreeNAS software solution
for my home use and failed to find one that matched my needs,
which were booting from a small 16MB USB flash drive and cre-
ating Software RAID 5 using 4 PATA hard drives. So I decided to
create it myself. I was a Linux/Windows advanced user, with the
limited shell script knowledge that is mandatory for all network
engineers. I started building an embedded Linux-based solution
similar to my GeeXboX home media center, but my skills didn’t
get me past even the first step of busybox compilation. While
performing a maintenance task on my m0n0wall home firewall
a few days later, I got the idea of modifying the existing soft-
ware into a NAS. It was during the study of m0n0wall for
replacing firewall features with Samba and ftp that I discovered
FreeBSD. I picked up some basic knowledge about programming
in PHP, and it took me a week to publish the first release. I came
up with a simple name for it, FreeNAS, and published the proj-
ect online just in case any other people had the same small NAS
needs as I. Publishing this personal project online has changed
my life by introducing me into the incredible community of peo-
ple behind open-source software.

The situation at that time was:
� I didn’t like coding WebGUI because I didn’t have the time or
inclination to learn Javascript for a cool AJAX user interface;
� I wasn’t a storage guy. I’d never touched a NAS other than
FreeNAS, and this home-only project unexpectedly got used
more and more in enterprise. Discovering the standard features
required by professional NAS (like Snapshot) by reading the
users’ feature request list made me uncomfortable. An example:
I learned about ZFS during BSDCan 2007 when I presented
FreeNAS for the first time, and I’m still not convinced that using

L

The BSD

PROJECT

1

2

BY OLIVIER COCHARD-LABBÉ

ROUTER

•

such a complex file system for home use makes
sense.
� I had a full-time job (network engineer). The
work on FreeNAS was just a hobby, but the time
spent managing the unexpected success of the
m0n0wall patch forced me to reconsider my
involvement in the project because it consumed a
lot of my free time. Also, I wasn't able to provide
a clear road map as to which direction to take the
storage technology, and I was not able to under-
stand some user problems like Unix file permission
mapping with CIFS.

My objective was to keep FreeNAS a NAS and
not become a generic server offering print or bit-
torrent client services, but I understood the desire
of users to have these features. The solution was
to add plugins, keeping the base core feature
offering NAS, but allowing users to transform it to
a generic server if they so desired. At that point, I
considered a full rewrite of FreeNAS as the
m0n0wall base—which used an mfsroot—didn’t
allow for the easy addition of plugins. It was dur-
ing this time that I discovered nanoBSD, but my
limited free time did not permit me to do it myself
(children are the worst enemy of an open-source
project managed during one’s free time!). Internal
team discussions focused on a new base for the
next FreeNAS and when the main developer (as it
was not me during this period) published the idea
of using a Linux Debian base for the new release,
it created an unexpected buzz online. Reacting to
this buzz, iXsystems contacted me and offered
their help with the development. I decided to give
them the full project and for free, because I’ve
always tried to keep money far away from my
hobby.

So after being liberated from FreeNAS in
December 2009, my idea was to start a new project,
but this time in a domain I knew more about. It
would be a software router, based on FreeBSD,
because that was the only OS where I felt confident.

My objectives were:
� To not target the home user as there were
already some WebGUI firewalls like m0n0wall
(replaced by the t1n1wall or SmallWall today) or
pfSense (or OPNsense) for that.
� To use nanobsd as the base as I hate reinvent-
ing the wheel. nanobsd is a great tool for building
FreeBSD-based appliances.
� No WebGUI. I simply can’t imagine how a
router configuration can be represented inside a
GUI. And my previous bad experience with the
“graphical” Nortel Networks Site Manager soft-
ware for configuring AN/ARN/ASN routers didn’t

help me either. I think it’s easier to just manage a
text file. This “feature” helps to keep the home
user away from the project as well.
� Configuration management. At the start,
adding NETCONF support was a consideration,
but its incredible complexity (more than 20 RFCs)
and its slow deployment made me reconsider and
instead opt for standard and well-known tools like
Ansible.
� I believed in software routers (before 2009),
but felt something was wrong with the slow soft-
ware forwarding performance of generic x86
servers. Their powerful CPU and NIC didn’t match
with their very slow forwarding rate, and a few
years later, netmap confirmed that it was just a
software problem.

THE BENEFITS OF USING BSDRP
BSDRP is a customized nanobsd disk image target-
ing router usage. This is standard FreeBSD that
has the same behavior as a network appliance
and is accepted by network administrators.
� Upgrading the system is like an old Cisco IOS.
You just install the new firmware file and reboot
it, thanks to the FreeBSD POLA (Principle of Least
Astonishment) that allows you to upgrade the sys-
tem without major changes to the existing config-
uration files.
� The read-only mode of the file system allows
you to power unplug/replug appliances without
problems.
� Small size. A 512MB flash drive is enough for
BSDRP. The zipped upgrade file is about 40MB.

By default the nanobsd image build script per-
mits you to add existing packages to the final
nanobsd image. BSDRP uses a highly customized
nanobsd configuration file that allows you to build
ports (with specific compilation options) during
the nanobsd image generation. This feature allows
cross-compilation of an i386 image from an
amd64 host.

BSDRP images disks are published for i386 and
amd64 architectures, but the nanobsd script was
improved so as to allow sparc64 images as well.
However, since the death of my last sparc64 serv-
er, I’ve stopped publishing sparc64 images.

The current selection of packages includes:
� Quagga and Bird as unicast routing daemons;
the first is for old Cisco users, and the second is
the next-gen routing software;
� mrouted, pimd, and pimdd as multicast routing
daemons;
� native carp, ucarp, and freevrrpd for high
availability. The presence of ucarp allows you to

Nov/Dec 2015 17

S E E
T E X T
O N L Y

1

2

3

3
4

5

18 FreeBSD Journal

use carp on some interfaces, and freevrrpd on
others;
� native netgraph netflow and pmacct for IP
accounting. Enabling netgraph negatively
impacts the forwarding performance, which is
why there is pmacct;
� mpd5 for all advanced PPP protocol support;
� OpenVPN, ipsec-tool for IKEv1, strongswan for
IKEv2;
� Python, because this language became more
and more used by network admin teams. This
also allows BSDRP to be managed by Ansible;
� Exabgp, a python-based tool—the swiss army
knife of BGP routing;
� iperf and netmap’s pkt-gen, for benchmarking;
� ISC-DHCP server and dhcprelay;
� tayga, a userland stateless NAT64 daemon;
� and monit as a process monitor.

Some specific tools and script were written
for this software:
� config—allows you to save/rollback/send/
receive system configuration;
� system—allows upgrading/checking the
integrity of the system;
� tuning—experiments with collecting system
data (number of CPUs, model of NIC, etc.) and
proposes a tuned value for obtaining the best
forwarding performance;
� equilibrium—helps to bench VPN configura-
tion (IPSec, OpenVPN, etc.);
� quagga-bgp-netgen—a very simple BGP route
generator using quagga;
� and some tcsh command completes specific to
a router.

A Testing and Documenting
Use Case
Once the BSDRP image was generated, I had to
build a network lab, but for building a network
you need multiple routers. I wrote some shell
scripts for different hypervisors (bhyve, virtualbox
and qemu) that allow the easy generation of a
full mesh network with multiple routers in one
command line. My main labs are done with
bhyve because of the incredible speed of the
VM. But the virtIO NIC presented by bhyve didn’t
support ALTQ, so I had to use VirtualBox which
can emulate a virtual NIC compliant with ALTQ.

The idea is to publish a lot of network lab
examples—including their full configurations—on
the BSDRP website, but at the moment, only a
few examples are available (BGP, OSPF, Multicast,
VRRP, PPP, GRE, GIF, IPsec).

Benchmarking Forwarding
Performance
BSDRP should be tuned by default to deliver the
best FreeBSD forwarding performance. But how
do you tune FreeBSD for router usage? There are
many “tuning guides” online, but the majority of
them give magic values without explaining why
some values are better than others. My idea was
to focus on a specific variable and to test a range
of different values against this variable. But for
that, I had to learn how to do a correct bench,
because during this step I learned that even for
an experienced network guy, doing benches is a
complex task.

What are the main parameters for benchmark-
ing a router? Hopefully there are some RFCs
explaining how to measure their routing per-
formances like RFC: 1242, 2544, 3222, and
5180. But when it comes to measuring more
advanced features like IPSec/GRE tunnels, there is
not an official guide.

The bench methodologies were adapted to my
“end user” usage. I’m not a hardware vendor
nor a routing software seller, so I don’t really care
about testing with multiple frame sizes or pre-
senting only the “best” profile as firewall ven-
dors do when presenting their outstanding fire-
wall performance in Mb/s…with only Jumbo
Frame. I'm interested only in the “worst” sce-
nario which means to bench using only minimum
frame size. This means that a lot of designations
of my benches can be renamed as “number of
packets forwarded during a Denial-Of-Service.”

But the RFC didn’t give complete details for
doing a bench. For example, RFC2544 requires
multiple trials. But how many trials, and what
should we do with multiple trial results?

The answer came from reading the FreeBSD
mailing-list: a lot of bench results published on
the mailing-list are through the ministat utility.
Ministat calculates the fundamental statistical
properties of the trial results: minimum, maxi-
mum, median, average, and standard derivation.
This provides the first answer to the question of
“how many trials?” Three at minimum, but more
is always better. On my benches, because my
device (DUT) is rebooted between each trial, I’m
limited by the incredibly long BIOS POST start
time of the commodity server. For a small 30-sec-
ond trial, it can lose about 4 minutes for booting
my HP or IBM servers (and my benches often
need more than 200 reboots). So I limit my num-
ber of trials to 5 when I’m benching a slow BIOS
POST server, and increase it to 10 trials for a
rapid BIOS POST server (like PC Engine APU or
Netgate’s RCC-VE appliance).

Nov/Dec 2015 19

This means that if you see any kind of “bench-
es” online that present just one measured value
(without derivations or number of trials), you can
ignore them. Once the input was collected—
parameters to bench, methodology, number of
trials—I wrote a shell script to automate the
bench. Presenting the final results was not easy,
as I needed to represent the errorbar concept on
the final graph, and more importantly find a good
title. As an example, my classical “server resumed
performance” graph shows three bars: one is
fast-fowarding, a second with IPFW enabled, and
the last with PF enabled.

Some readers wrongly interpret these results as
showing that IPFW is a better firewall than PF
because it has a better packet-per-second (PPS)
value. But that is incorrect. Benching a firewall is
part of a totally different (and more complex)
world, and hopefully a firewall is not reduced to
its PPS performance. I had to use a long title on
my graphs to avoid this kind of interpretation.
And for people interested in the impressive value
displayed under the name “FreeBSD 11-routing,”
it’s Alexander V. Chernikov’s projects/routing avail-
able on the public FreeBSD svn.

Publishing results online is always challenging
because they will be criticized, and you have to be
sure they don’t contain errors. The last thing I
want to do is waste a developer’s time working on
a nonexistent problem. Hopefully my early errors
were quickly pointed out by the community. As an
example, at the beginning I was generating just
one IP traffic flow, which didn’t allow the use of all
the multi-queue features of NIC. A second error
was in not disabling the autoscale feature of

graphing software, as the resulting graphs then
artificially increased the difference of the results.

The final problem in presenting data is the
unit. The main performance value of a router is
the packet-per-second unit, but regular users are
expecting a maximum bandwidth in Mb/s (or
worse: MB/s). Because my benches are using only
the smallest packet size (64B), it’s possible to use
the simple Internet Mix (IMIX) distribution for an
estimated equivalence in Mb/s. Even if the simple
IMIX reference (58% of 64B packet, 33% of
570B packets, and 8% of 1518B packets) didn’t
match current distribution that is more bimodal

(40% less than 100B
and 30% more than
1500B in 2012),
using the simple
IMIX allows us to
obtain values con-
stant in time.

Now that I’ve
defined my method-
ology, I need to add
more benching fea-
tures like
IPSec/OpenVPN or a
way to test forward-
ing performance vs.
number of routes.

What is
the EINE
Sub-project?
In 2014, my employ-
er, Orange, asked

me to build a proof-of-concept allowing deploy-
ment and management of any kind of x86 net-
work appliance over the Internet with minimum
administrative tasks. I reused BSDRP for this task
and created a sub-project called EINE for “Easy
Internet vpN Extender.” This unique nanobsd
image once installed can be configured for differ-
ent roles.

Manager. It’s the host that stores all appliance
configuration parameters and Ansible playbooks
for all roles (as a plain text file).

VPN Gateway. To terminate client routers VPN
tunnels.

End-clients that can be VPN-Wifi-routers, serial
terminal servers, captive portal appliances, etc. It’s
the default configuration of the nanobsd image
configured for plug&play. Plug&play is done by an
Internet facing NIC configured in DHCP client
mode and with an openVPN client using a generic
certificate connecting to the VPN gateways.
When the generic certificate is used, the appli-
ance is in an “unregistered” state and all traffic

•

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

from it is denied. The appliance needs to receive
its configuration files (including certificates) from
the manager in order to change to a “regis-
tered” state.

All administrative tasks are done from the
manager that is using simple helper scripts (in
Python) and Ansible.

Typical tasks include:
� Displaying lists of unregistered appliances con-
nected to all VPN gateways
� Applying a role to an unregistered appliance
(it’s a simple Ansible group mapping)
� Upgrading all connected appliances
� Deleting a registered appliance that was
declared stolen

Notice that I’ve chosen to use a FreeBSD
-head for this project for two main reasons:
� To help FreeBSD by testing -head;
� To force myself to learn how to build continu-
ous integration servers, and to write tests
(because -head is so useable I didn’t take time
for this task).

Planned Features
The next major change will be to test a solution
other than nanobsd. I’m using a highly cus-
tomized nanobsd script that allows us to build,

port, or compile some of the /usr/src/tools during
nanobsd image generation. But the FreeBSD port
system changes a lot and following its evolution
takes a lot of time. Recently poudriere added the
option of generating images and firmware in
nanobsd. Using this feature will hide all port sys-
tem changes behind the powerful poudriere.

The second major change will be to do more
tests on FreeBSD projects/routing and its stability.
I will eventually switch from the release branch to
this one. And last but not least, I’m eager to test
the new netmap-forwarding software
(announced during BSDCon Brasil 2015)! •

OLIVIER COCHARD-LABBÉ has 16 years of
network engineering experience. He discov-
ered FreeBSD by accident in 2005 while
patching m0n0wall to add NAS features. Since
then he has contributed to FreeBSD mainly by
focusing on networking and maintaining sim-
ple ports. Trying to convince his colleagues
that open-source software on generic x86
servers is the future is his favorite pastime at
work. Rugby, running and freediving are his
sports. He lives near Nantes, France, with his
wife and two young daughters (whom he tries
to keep away from video games and TV).

•

20 FreeBSD Journal

1
2

