
QTell us a bit about yourself. How did you
get started with FreeBSD and what is your

involvement with the FreeBSD Project?

AI'm a physicist by trade, but all of my actual
work has always involved software.

I decided to give FreeBSD a try when I
was in high school, after Linux ate my
files for the n-th time (oh, the joy of of
the 2.3.X development kernels). For a
long time, I was just a user and occasion-
al sysadmin. Then I became involved in
ports, and eventually got a ports commit
bit. In 2008, I decided to participate in
Google Summer of Code (GSoC), work-
ing on NFSv4 ACLs. Quickly afterwards, I

received a FreeBSD src commit bit and have used
it since then.

QCurrently, you are working on the root
remount project. What benefits does root

remount provide and when would a user use
this feature?

AIt gives you a way to boot with a temporary
file system, such as a memory disk image

preloaded by loader(8), and then replace it
with the proper one. A typical example would be
an iSCSI boot, which presents a chicken and egg
problem: setting up an iSCSI session requires
running iscsid(8), and thus mounting
rootfs, as it contains iscsid. With reroot, you
provide a ramdisk with the necessary binaries
(eg /rescue) and a script to set up the iSCSI
session, and call "reboot -r" after the real
root device becomes accessible. The kernel
changes the root device and init(8) continues
with the usual startup scripts.

You can think of it as a FreeBSD analogue of
pivot_root() and initrd, as seen on Linux.

Note that you can also use remount root as a

way to quickly reset the userspace, which is use-
ful when experimenting with startup scripts and
configuration changes.

Root remount support has been committed to
11-CURRENT and there will be a merge to
stable/10. Reroot support is planned to be
included in FreeBSD 10.3 which is currently
scheduled for release in March 2016.

QFrom a developer's perspective, how diffi-
cult was it to create the root remount

feature?

AIt was quite an adventure. While the whole
idea is simple, several approaches had to be

tried, and a few unrelated things got fixed in the
process.

I didn't go with the pivot_root()
approach as it's an admin-unfriendly interface to
work with. It also has a problem with devfs:
after pivot_root() you wouldn't be able to
unmount the old /dev, because of all the
opened device nodes for pseudoterminals and
mounted disk devices. Instead, I decided to just
repeat the last phase of system boot, from the
point of mounting the root file system onwards.
Somehow the first attempt was naive: a function
that called vfs_unmountall() which unmount-
ed all the file systems and also killed init(8) in
the process, because a process cannot survive
the forced unmount of the file system that con-
tains its executable file. I then repeated the steps
normally performed during startup, such as
mounting "/" and "/dev" and starting init. I
modified the reboot(2) syscall and the
reboot(8) utility to get that function called. I
also needed a way to make it possible for the
new init(8) to have PID 1.

This experiment only required a few hours of
work, but it turned out there was a bug that

In FreeBSD BY DRU LAVIGNE
this month

28 FreeBSD Journal

Over the next few months, we'll be taking a closer look at some of the new features
making their way into the 2016 releases, and the developers behind those features.
This month, I had a chance to interview EDWARD TOMASZ NAPIERALA about his jour-
ney from FreeBSD user to ports committer to Google Summer of Code student to src
committer. He also discusses the development of the root remount feature for
FreeBSD. You can read a bit more about his past projects at his FreeBSD wiki page
(https://wiki.freebsd.org/EdwardTomaszNapierala).

TM

caused a panic after a forced unmount of a file
system with a running executable, deep within the
virtual memory management code. Since this was
way outside of my area of expertise, I reported the
bug and wrote a workaround that killed off all the
processes first. The result kind of worked, but
afterwards the system was...slow. It turned out
that sending a signal to one particular kernel
thread resulted in it burning CPU cycles indefinite-
ly. So, I reported the problems and they were fixed
by someone with better knowledge of those parts
of the system.

But there were more adventures. The
thing I didn't foresee, and in hindsight I
should have, was that the init process is
special, as it reaps orphaned processes.
Because of that, the kernel treats it differ-
ently from other processes. And that treat-
ment, like reparenting the orphaned zom-
bies from the old PID 1 to the new one, would
need to be repeated in the reroot code. And that
code is rather complex.

Another problem was that after rerooting, there
was a leftover /dev mount. It turned out that
devfs ignored the forced unmounts. This section

of code was something I was reasonably familiar
with, and I made it work by fixing a few problems
in the GEOM framework. I then realized that it
didn't actually get me any closer to my goal: one
cannot just forcibly unmount devfs before
rootfs, because it would be like yanking a drive
without unmounting it, resulting in a dirty file sys-
tem. So, the actual fix for forced devfs unmount
required rearranging the code in vfs_unmoun-
tall() to make sure it doesn't try to unmount
devfs before unmounting the rootfs.

With all those fixes, the code finally worked cor-

rectly, but it was ugly and not very maintainable.
And the init part was hellish to debug as the
forced devfs unmount revoked the terminals, so
even the simplest form of debugging, using
printfs, couldn't work. And ddb(4), the kernel
debugger, didn't help either, as it cannot debug user-

Nov/Dec 2015 29

•

There are several FreeBSD committers who
started by participating in GSoC, me included.

It's like a virtual internship at FreeBSD.”
—EDWARD TOMASZ NAPIERALA

“

FOSDEM • January 30 & 31 • Brussels, Belgium
https://fosdem.org/2016/ • FOSDEM is a free event that offers open-source commu-
nities a place to meet, share ideas, and collaborate. This annual event attracts
over 5,000 attendees each year. This year's event features a BSD devroom, a FreeBSD
booth in the expo area, and an opportunity to take the BSDA certification exam.

SCALE • January 21 – 24 • Pasadena, CA
http://www.socallinuxexpo.org/scale/14x • The 14th annual Southern
California Linux Expo will once again provide several FreeBSD-related presenta-
tions, a FreeBSD booth in the expo area, and an opportunity to take the BSDA
certification exam. This event requires registration at a nominal fee.

’16

BY DRU LAVIGNE

Events Calendar
The following BSD-related conferences will take place
in January 2016. More information about these events, as well

as local user group meetings, can be found at www.bsdevents.org.

THROUGH JANUARY 2016

S E E
T E X T
O N L Y

space processes.
The second attempt preserved the ideas that

worked: to unmount everything, then mount the
new rootfs using the code already there in the
kernel to mount it during boot. This attempt
replaced the bad part: namely, restarting init.

The reason the init was killed was that when you
unmount a file system that contains an executable
file for a running process, the process will (probably)
die. The process might be reading some page con-
taining the machine code from the binary, and can't
because the file system is no longer there. And
mlockall(2) doesn't help in this case.

So, what I could do instead was to make
init(8) copy itself into a safe place before
unmounting rootfs, then exec(2) the copy.
Remember that exec doesn't create a new
process; it just replaces the running one, so the
new init would run from the new executable
file, but still keep PID 1. And, after the whole
process is done, it will execute the /sbin/init
from the target rootfs once again.

Another change compared to the first proto-
type was that instead of unmounting /dev, it
was preserved, moved from its old mountpoint in
the old rootfs to the new one. While it would-
n't be the best piece of functionality to expose to
the userspace, it was already there used by the
existing root mount code.

And that's how it works now: the reboot(8)
utility sends a signal to init(8), which then
mounts a tmpfs onto /dev/reroot, copies
the init(8) executable there, executes it, asks
the kernel to switch file systems, executes the
new /sbin/init, and cleans up. Then, init
starts up as usual, running its rc scripts.

QWhat other types of development work
have you done within the FreeBSD Project?

AI started with ports, both fixing existing ones
at a time when hundreds of them required

build fixes due to a GCC upgrade, and adding

new ones. Then I went to src, and implemented
rctl(8), live file system resizing, the native
iSCSI stack, autofs(5), and finally the root
remount. I've also fixed a number of bugs, from
ZFS to the iwn(4) WiFi driver.

QIn addition to being a past Summer of
Code student, you have also participated as

a FreeBSD mentor in the Summer of Code pro-
gram. What are your thoughts on the Summer
of Code program with regards to new develop-
ers and open-source projects?

AIt's a great opportunity to get involved in the
project. There are several FreeBSD committers

who started by participating in GSoC, me includ-
ed. It's like a virtual internship at FreeBSD.

One thing to remember, as a potential student,
is to get involved a few months earlier. Get in
touch with people working in your chosen area of
interest. If you can't tell who that would be, just
ask some developers as people will usually be able
to easily point you at the right person. Finally, try
to have a good understanding of how your proj-
ect is supposed to work. When you do, getting
accepted is easy.

QHas participating in the FreeBSD Project
advanced your career? If so, how?

ASure it did! Actually, most of my career has
been closely related to FreeBSD. I got my first

FreeBSD-related job offer just after my first GSoC,
at Wheel Systems, a vendor of authentication sys-
tems and FreeBSD-based security appliances.
Several years after that, I decided to take a break
from commercial work and make my living devel-
oping FreeBSD, under the FreeBSD Foundation's
sponsorship. •

Dru Lavigne is a Director of the FreeBSD
Foundation and Chair of the BSD Certification
Group.

30 FreeBSD Journal

Go to www.freebsdfoundation.org
1 yr. $19.99/Single copies $6.99 ea.

SUBSCRIBE TO DAY
PEOPLE ARE TALKING ABOUT

J O U R N A LAVAILABLE AT YOUR FAVORITE APP STORE NOW

TM

TM

