
Streamlining Builds
This need for fast access to test environments has led to the innovation of several utilities and
toolsets designed to streamline the ability of agile developers to quickly create, test, and reclaim
test environments on demand. Vagrant allows anyone to easily download an OS image and
quickly spin it up for testing in a virtual machine (VM).

As explained by the Vagrant website, http://www.vagrantup.com/about.html:
Vagrant is a tool for building complete development environments. With an easy-to-use

workflow and focus on automation, Vagrant lowers development/environment setup time,
increases development/production parity, and makes the “works on my machine” excuse a relic
of the past.

Vagrant was started in January 2010 by Mitchell Hashimoto. For almost three years, Vagrant
was a side-project for Mitchell, a project that he worked on in his free hours after his full-time

10 FreeBSD Journal

By Brad Davis

As continuous integration gains more and more ground in develop-
ment arenas around the globe, it becomes increasingly necessary to
enable those shops with the ability to quickly spin up an operating sys-
tem (OS) container, test against that container, and then quickly reclaim
those resources.

One common situation in which this practice has become prevalent is
the development of recipes for one of the many configuration engine
(CFE) tools such as SaltStack, Puppet, or Ansible. This allows the mod-
ern development operations (DevOps) team to quickly evaluate changes
to their configuration manager by spinning up a version of the machine
against which they need to test, run, and, if necessary, debug the recipe
until it works. Upon a successful test, the test machine can be
destroyed.

To Test on FreeBSD

Using

Vagrant

Nov/Dec 2015 11

S E E
T E X T
O N L Yjob. During this time, Vagrant grew to be trusted and used by a range of individuals to entire develop-

ment teams in large companies.
In November 2012, HashiCorp was formed by Mitchell to back the development of Vagrant full-

time. HashiCorp builds commercial additions and provides professional support and training for
Vagrant.

Vagrant remains and always will be a liberally licensed open-source project. Each release of Vagrant
is the work of hundreds of individuals' contributions to the open-source project.

Vagrant is available for Windows, Mac OS X, CentOS, Debian systems, and can be obtained from
https://www.vagrantup.com/downloads.html. Commonly supported virtualization platforms include
VMware and Oracle VirtualBox.

Using a tool like Vagrant makes this process very efficient and can be easily configured to be repeat-
able with tools like Packer.

Packer
As previously mentioned, Vagrant is quite useful for testing various configuration changes. Many col-
leagues, in various businesses and development shops, use it on a daily basis. Initially, my personal expe-
rience with Vagrant was through the use of Packer. Another project from HashiCorp, Packer is designed
to orchestrate an installer by running commands through a virtual keyboard in a virtual machine. Packer
supports virtual machines in Amazon Web Services (AWS), Digital Ocean, VMware, QEMU, Oracle
VirtualBox, and many other virtualization environments.

HashiCorp defines Packer on their website, http://www.packer.io, as:
Packer is a tool for creating machine and container images for multiple platforms from a single

source configuration.
Simply put, Packer provides an interface into a virtual machine into which commands can be

entered as if the operator were sitting at the keyboard. As such, a Packer script is mostly contrived of
keyboard commands and wait statements. Packer output is produced via an emulated VGA console, so
there is no way for the script to see if a command has completed.

This automation layer creates some difficulty since Packer requires that the operator understand the
timing of the commands being entered. If a command fails to complete before the next command is
executed, it may not buffer correctly, resulting in an outright failure of the script or every command
after to fail individually. Therefore, it is recommended that wait times be padded.

The operator must also have an understanding of the timing of the system based on the type of hard-
ware on which the virtual machine has been created. Will it use SSD? Spinning disk? 5400 or 7200 RPM
SATA? 10 or 15K SAS/SCSI? The overall health and workload of the system? All these things can affect the
timing of commands being run.

Fortunately, with the use of Packer and Vagrant, it is very easy to set up and test these configura-
tions, making adjustments where needed. In the end, a single Packer script can be tuned to build VM
images for multiple platforms.

Packer and Vagrant
Having used Packer, I was able to develop a recipe that would create a virtual machine, install FreeBSD,
and then package it up for use with Vagrant. This script could then be modified and tuned to support
traditional, bare-metal hardware, as well as solid-state-based systems. Given that the Packer utility
makes building a virtual machine so easy and efficient, it is really not that painful to experiment.

Releasing Vagrant Images
Upon concluding the work with Packer, it was discovered that the FreeBSD Project already had support
for building various types of virtual machines. They included support for Amazon EC2, Google Cloud
Compute, VMware, and Oracle VirtualBox. This meant that creating a FreeBSD Vagrant image from the
normal release process should be relatively simple. Within a couple of weeks, and with the help of a
FreeBSD Release Engineer, Glen Barber, an image was built and was ready to go for the FreeBSD 10.2-
RELEASE.

Getting Started with Vagrant
By default, Vagrant has what are called “base boxes.” A base box is an OS image that is preconfigured
to work with Vagrant and has some tools preinstalled. At a minimum, the base box should have the

12 FreeBSD Journal

tools necessary to work well under the virtualization environment. Some base boxes are preconfig-
ured as a full-stack development environment, with a database, web and other things already
installed.

What follows provides a walkthrough of the steps necessary to set up Vagrant on an Apple
computer.

Environment Parameters—Physical System:
•MacBook Pro running OS X
•Vagrant base box: FreeBSD base box

Prerequisites
The first step is to install Oracle VirtualBox (https://www.virtualbox.org/wiki/Downloads) or VMWare
(https://www.vmware.com/products/desktop-virtualization.html) on your machine if you do not
already have it.

Then download Vagrant from: http://www.vagrantup.com/downloads.html.
Install both packages onto your system.

Spin It Up
Open a terminal and create a directory in which to store the configuration and base box. The config-
uration is stored in a file called ‘Vagrantfile.’

In this example, create a directory called testing and install the FreeBSD 10.2-RELEASE base box.

The init stage will download the base box from the official images that the FreeBSD Release
Engineer publishes. Once it is downloaded and set up, the next step will clone the VM and start it.
This is an important step, as it will allow quick testing to happen in the clone, and then it can be eas-
ily rolled back to the clean slate state and relaunched.

Once the VM has booted, it is easy to log in to the virtual-machine:

brad@penelope:~> vagrant ssh

By default, all Vagrant base boxes have a “vagrant” user with a preinstalled ssh key setup.
Normally it would be a large security hole to have a known user and a publicly available ssh key

installed on a system. Vagrant attempts to answer this concern by configuring the VM in NAT mode,
masking the VM behind your local machine’s IP address. This prevents anyone outside your local
machine from accessing the virtual machine directly. While there are other security measures that can
be put into place to better protect the local system, that is beyond the scope of this document and
will not be discussed here.

Another important note regarding the root user of a Vagrant system is that the sudo pkg is usually
included and configured to allow the “vagrant” user to do anything it may need to do. However, if
for some reason the root password is needed, the default root password is “vagrant”. Always refer
to the Vagrant docs site for up-to-date information, https://docs.vagrantup.com/v2/boxes/base.html.

Alright. It’s time to install some tools and get started. First, install the NGINX and VIM packages:

vagrant$ sudo pkg install -y nginx vim

Once installed, verify that NGINX starts as expected and perform some testing:

vagrant$ sudo service onestart nginx

brad@penelope:~> mkdir testing
brad@penelope:~> cd testing
brad@penelope:~> vagrant init FreeBSD/FreeBSD-10.2-RELEASE
brad@penelope:~> vagrant up

Nov/Dec 2015 13

Locate the IP address of the machine, and make sure Nginx is working properly:

As noted here, the IP of this Vagrant machine is currently 172.16.245.130. By opening a browser
and pointing it to http://172.16.245.130, a normally operating NGINX instance would reply with a
default page. Congratulations! NGINX is working.

The Power of Vagrant
Now let’s do something dangerous to show off the power of Vagrant.

As an example, let’s suppose the FreeBSD kernel “mysteriously” disappears:

vagrant$ sudo rm -fr /boot/kernel/kernel

The VM is running fine for the moment, and will likely continue to do so while the kernel is loaded
in memory. What happens when it’s rebooted? Simply put, it is not going to come back:

vagrant$ sudo reboot

vagrant$ ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM>
ether 00:0c:29:32:33:06
inet 172.16.245.130 netmask 0xffffff00 broadcast 172.16.245.255
nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
media: Ethernet autoselect (1000baseT <full-duplex>)
status: active

Allowing ample time for the VM to reboot, try to reconnect:

brad@penelope:~> vagrant ssh

It will eventually time out. Now what?
Sure there are different ways of fixing the VM, and if this were a production system, we might exe-

cute any one of them. But this is a test environment and the power of Vagrant is in its ability to roll
back to a clean slate quickly:

brad@penelope:~> vagrant destroy
brad@penelope:~> vagrant up
brad@penelope:~> vagrant ssh

Now we are back in and ready to go again.
Some other useful commands include shutting down the Vagrant instance:

brad@penelope:~> vagrant halt

And of course the built-in help is useful:

brad@penelope:~> vagrant help

Once you are done with a specific box, you can interact with it using the ‘vagrant box’ subcom-
mands. For example, to list the boxes available:

brad@penelope:~> vagrant box list

And to destroy a box that is not needed anymore:

brad@penelope:~> vagrant box destroy FreeBSD/FreeBSD-10.2-RELEASE

Conclusion
In this article we introduced Vagrant
and how it can be used to spin up
virtual machines for testing.
Hopefully this gives you ideas on
how to streamline your workflow
and make testing and developing
software or infrastructure easier. For more
information visit the Vagrant website at
http://www.vagrantup.com. Hashicorp maintains a
repository of Vagrant boxes for testing and running
various operating systems and configurations called
Atlas. For a list of official FreeBSD Vagrant boxes visit
the FreeBSD section on Atlas here:
https://atlas.hashicorp.com/freebsd/.

BRAD DAVIS has served as a
Systems Architect, Developer,
and Consultant. For over 10
years he has been a FreeBSD
committer and involved with
many different areas of the proj-
ect. Starting out as a documenta-
tion committer, he used that
knowledge to help the Cluster
Administration and Postmaster
teams. After retiring from those
projects, he dabbled with the
pkg and poudriere projects.
Currently, Brad works on docu-
mentation, ports, and the
RaspBSD project, which will
provide FreeBSD with extra
tools for ARM-based systems
like BeagleBone Black and the
Raspberry Pi. When he does
find time to relax, Brad enjoys
skiing and motorcycling.

14 FreeBSD Jour

