Virtual Private Systems
for FreeBSD

Klaus P. Ohrhallinger
06. June 2010

Abstract

Virtual Private Systems for FreeBSD (VPS) is a novel virtualization
implementation which is based on the operating system level. Its main
design advantage is the multiplexing rather than isolation of global re-
sources, as e.g. “Jail” does. This permits the virtual environments being
much more similar to the non-virtual ones, reducing configuration and
adaption effort. Additionally it supports live migration which can largely
reduce maintenance time and therefore sysadmin hours and service down-
times.

1 Introduction

Virtual Private Systems for FreeBSD, short VPS, is a new operating system
level virtualization implementation for FreeBSD.

Virtualization at OS level makes a very small performance overhead and
great scalability, compared to other virtualization methods, possible.

It is assumed the reader has basic knowledge about UNIX system internals.

1.1 Common virtualization methods

Emulation of Hardware A complete set of hardware, including a CPU, is

emulated in software. The emulator does not need special privileges on the

physical host. Any architecture can be emulated. This approach is the slowest

of all, but very useful for cross architecture development and debugging.
Example: Bochs.

Hypervisor One small program called “hypervisor” runs on top of the hard-
ware. Its job is to dispatch access to memory, privileged instructions and hard-
ware. One guest instance runs the actual hardware drivers and serves requests
for all other guests. Different guest operating systems can be used. Unless the
CPU supports virtualization, they all need some modifications for virtual mem-
ory mapping and hardware access. This approach is expected to be quite fast
and secure but it doesn’t scale very well for big numbers of guests.
Examples: XEN, VMware ESX.



OS level virtualization Only one operating system instance is used. The
operating system has support for virtualizing itself, creating multiple virtual
environments. This approach has a very small performance overhead and over-
commitment of memory and diskspace works well.

Examples: AIX Workload Partitions, Solaris Containers, Virtuozzo/OpenVZ
(Linux).

1.2 Definitions

FreeBSD The FreeBSD Operating System, on which the VPS virtualization
implementation is based on [1].

VPS Short for “Virtual Private Systems for FreeBSD”, the name of the im-
plementation covered in this paper.

Jail / Prison A facility in FreeBSD for isolating processes or creating a sort
of virtual system instance.
In the userland Jail is referred to as “jail”, though inside the kernel as “prison”.
Jail appeared in FreeBSD 4.0 and is widely used [2].

VPS instance A single virtual environment provided by the VPS implemen-
tation. It looks similar to a physical host running the FreeBSD kernel and is
able to run a FreeBSD userland, including the init process.

Live migration The process of moving a VPS instance from the physical
host it is currently running on, to a different physical host. “Live” means that
after the migration process succeeded, all processes inside the VPS instance
are still running, continuing exactly where they were suspended for migration.
TCP connections remain valid and functional. Even a user logged into the VPS
instance by SSH during the live migration process will only experience a short
“freeze”.

2 Overview

2.1 Features

Low overhead Since VPS is based on the operating system level, the cpu,
memory and diskspace overhead for virtualizing is very small.

Similarity of virtual to non-virtual environments VPS aims to create
virtual environments as similar to non-virtual environments as possible. When
migrating a non-virtual installation into a VPS instance, only configuration files
referring to hardware need modification (e.g. /etc/fstab).



Nested virtualization VPS works in a hierarchical way, allowing VPS in-
stances to create and manage their own VPS child instances. If a resource quota
is set for a VPS instance, it has to share its own quota with VPS child instances
it creates.

Live migration VPS instances can be migrated from one physical host to
another, preserving the running state. This includes all network configuration,
running processes and established TCP connections.

Fine grained resource control VPS will support fine grained resource ac-
counting and limiting in the future.

2.2 VPS versus Jail

Although Jail is a great, widely used feature in FreeBSD, its goal was and is
increasing security by isolating and constraining processes with low overhead
and impact on the FreeBSD code base, rather than virtualizing the system in a
full featured way.

Multiplexing versus Isolating The implementation of Jail and VPS differ
substantially.

For instance, while VPS keeps one process table/tree for each VPS instance,
Jail uses only one global process table and decides for each entry, if it can be
“seen” by another Jail instance. Therefore no PID can exist in two Jail instances
at the same time, which means no (unmodified) /sbin/init and no live migration
are possible.

Unvirtualized resources In FreeBSD Jail, many resources are not virtual-
ized. For some of them, access can be disabled via sysctls, and some of them
just remain shared between all virtual environments.

Jail was more meant to be a security feature than a full-featured virtualiza-
tion facility. In contrast VPS virtualizes any resource necessary for providing
feature complete virtual environments that look and act as real as possible.

3 Implementation

3.1 System prerequisites

Currently development is done on a FreeBSD 8.0-RELEASE source tree. When
applying the patch to a CURRENT tree it will need some work.

The kernel configuration must include “option VIMAGE”. VPS uses VIM-
AGE for providing virtual network stacks.

Currently only the i386 architecture is supported.



3.2 Virtualization basics

In order to provide virtual environments, all global resources the kernel keeps,
need to be either multiplexed or isolated. Multiplexing means keeping a certain
resource not only one time but n-times, one time for each virtual instance.
Isolating means to restrict access to a certain resource to one certain virtual
instance.

A good example for multiplexing is the table of processes. If each virtual in-
stance gets its own process table, each virtual instance can use any PID number
it wants, without having collisions between the virtual instances. Furthermore it
makes access from one virtual instance to processes of a different virtual instance
impossible.

A good example for isolating is access to real hardware like a harddisk drive.
There is no point in trying to virtualize a physical harddisk. So only one virtual
instance gets the right to use this harddisk drive, while all other virtual instances
are isolated from it.

3.3 Major points of code integration

As much as possible of the VPS code resides in its own subdirectory in the kernel
source tree. These are the major points where the VPS code gets involved with
the FreeBSD code base:

References to global variables References to certain global variables are
prefixed with "V _”, which are newly declared preprocessor macros that resolve
to VPS instance private variables. See 3.4 on the following page for an example.

fork1l() and exitl() functions Some changes for dealing with processes
without parents, i.e. the init process of a VPS instance.

Device Filesystem devfs Hiding entries based on the VPS instance refer-
ence, see 3.6.1 on page 6 for further explanation.

/dev/console device driver Only “vps0” (the “main” VPS instance) per-
forms operations on the actual /dev/console device. Operations made from any
other VPS instance context are silently discarded.

Pseudo tty (pts) code Keeping a VPS instance reference in pts devices and
being able to allocate devices with given index numbers.

boot() function See 3.6.2 on page 6.

priv_ check() interface Extended by a VPS instance dependent privilege
check.



Syscall entry and return points Some additional information, required for
resuming live migrated threads, is stored.

Kernel initialization Setting up the VPS subsystem.

VFS mounts Keeping a reference to the VPS instance in VFS (Virtual File
System) mounts.

TCP input and output routines Delaying or discarding any input/output
if the VPS instance is suspended or scheduled to be aborted.

3.4 Multiplexing global variables

A FreeBSD kernel without VPS maintains global variables like the process table,
the hostname, number of currently existing processes, and much more.

In a VPS enabled kernel, global variables are replaced by variables private
to a VPS instance. Therefore even if no VPS instance is explicitly created, the
system knows the instance “vps0”, which is the “main system”. This instance is
created very early at kernel boot and has all privileges.

VPS instances can be created in a hierarchical way, allowing one VPS in-
stance to manage its child instances and pass on part of their resource quotas.

Each “struct ucred” keeps a pointer to the real VPS instance, and each
“struct thread” keeps the pointer to the effective VPS instance. A “struct ucred”
contains user credentials and is referenced by threads, processes, sockets, some
devices as well as some other resources.

The following example (in reverse order) shows how the list of all processes
on the system, is virtualized:

Original, non virtualized code:

int

fork1(td, flags, pages, procp)
{

LIST_INSERT_HEAD(%allproc, p2, p_list);

struct proclist allproc;
Modified, virtualized code:



int
forkl(td, flags, pages, procp)
{

I;iéT_INSERT_HEAD(&v_allproc, p2, p_list);
}
#define V_allproc VPSYM(allproc)
#define VPSYM(x) curthread->td_vps->_#i#x
struct thread {

éé%uct vps *td_vps;
}
struct vps {

éé?uct proclist _allproc;

}
This method was taken from the VIMAGE/VNET Network Stack Virtual-

ization.

3.5 Runtime system configuration

A VPS enabled kernel must be able to allocate and free certain resources that
would be otherwise only allocated at boot time and never freed.

3.6 Special virtual resources and facilities
3.6.1 Device Filesystem

If a device has a reference to a VPS instance (kept in “struct ucred”), devfs will
only show it to the right VPS instance. Currently this is used for virtualizing
pseudo ttys. The global registry of devices remains unchanged.

3.6.2 The “boot” system call

Calls to the boot() system call in “vps0” context get dispatched to the original
functions. However calls made in any other VPS contexts lead to a VPS instance
shutdown or reboot.



3.6.3 Virtual File System Operations

The VFS code is not virtualized. This makes it possible to share filesystems and
access directories of VPS child instances. Critical VFS operations are forbidden
by default for instances other than “vps0”, but can be enabled if needed.

3.7 Snapshots, Restoration and Live Migration
3.7.1 Overview

VPS is capable of creating snapshots of a running VPS instance. A snapshot
image includes network interfaces, routing tables, filesystem mounts, processes,
process memory, open files, sockets, devices and much more.

A snapshot can be used to restore a VPS instance at a later point or on a
different physical host.

The live migration process consists of several operations:

Synchronization of the filesystem to the remote host.

Suspending the local instance.

Second filesystem synchronization.

Creating the snapshot image.

Transferring the snapshot image to the remote host.

Issuing restore command to the remote host.

Aborting the local instance.

Resuming the remote instance.

If the live migration process fails the local instance is resumed.

On success the migrated VPS instance continues its work like nothing had
happened. Even established TCP sessions remain functional.

3.7.2 Consistency

To make sure the snapshot content is consistent, the VPS instance has to be
suspended. Every thread is removed from sleep queues and the scheduler’s list.
Threads in uninterruptible sleep (waiting for I/O operations to complete) have
to be waited for. A special flag in the virtual network stack is set to keep it
from sending or receiving any more data.

After the snapshot is created, or a snapshot was restored, the VPS instance
may be resumed.

3.7.3 Dumping

All objects belonging to the VPS instance are dumped to memory. For some ob-
jects additional information has to be gathered and saved. Finally the userspace
tool writes the snapshot image to a file or sends it over the network. All
userspace memory pages are directly mapped into the userspace tool’s mem-
ory, rather than being copied.

There is no way to determine in advance the amount of memory needed to
hold the snapshot image. As soon as an object is unlocked, it may change or even



vanish. Therefore VPS reserves a quite big virtual continuous address space and
maps in physical pages on demand. While holding locks that forbid sleeping,
allocating pages may fail. All snapshot routines that hold non-sleepable locks
while allocating pages are able to restart, in case memory allocation fails.

3.7.4 Restore

After a sanity check of the snapshot file, all objects are restored, eventually
creating a full VPS instance.

Threads which were in a syscall when the snapshot was made, restart the
syscall if possible or return to userspace with EINTR (Interrupted system call).

Some kind of objects have dependencies which make it impossible to restore
one by one. For instance connected unix domain sockets keep references to
each other. Therefore each restored object that might have dependencies like
this, is put on a temporary list, including information like an ID number and
the pointer it had when it was dumped. During the restore run, objects can
be looked up on this list whenever a reference is to be resolved. Apart from
rebuilding dependency trees, this list is also used to run some fixup operations
at the end of the restore process.

3.8 Virtual Networking

The network part is done by including VIMAGE/VNET network stack virtual-
ization. Each VPS instance keeps a pointer to one, private VNET instance.

For easy interconnecting of VPS instances the if vps network device was
written, which basically acts as a layer 3 switch.

IP packets are received on the if vps interface that owns the destination
address and is allowed to use it by means of VPS instance configuration. If
no valid output interface is found, the packet is received on “vps0”, which is
supposed to be owned by the “main” VPS instance.

In a typical setup, the physical host would be connected via ethernet and
maintain published arp entries for its VPS instances. Instead of if vps any
other network solution can be used.

3.9 Privilege Checking

Unlike FreeBSD Jail, VPS does not have many points where privileges must be
checked.

Most of the work is already done by having separate system globals. E.g. no
VPS instance is able to access processes of another instance, because it simply
has no access to process tables of others.

3.10 Management

Management of VPS is done using the "vpsctl” userspace command, which in
turn performs ioctl and mmap operations on /dev/vps.



3.11 Configuration

Configuration of instances is kept in config files, which are read by the “vpsctl”
userspace command.

Typically a file would include a VPS instance name, where and how to mount
the vfs root, number and type of network interfaces, allowed IP addresses and
resource limits.

4 Future

4.1 Current status and focus in further development

Testing, improving stability, adding features Currently VPS has to be
considered highly experimental. Loads of things are implemented and work
quite well, but there are still unsupported system resources, missing privilege
checks and bugs.

The focus in the next time will be on extended systematic testing, in order
to get the code as stable as possible. On a more long term view, VPS will get
more feature complete for typical uses, like running common server software
(e.g. Apache, Postgres, some scripting languages) and being able to reliably
live migrate them.

Resource accounting and limiting At the time of writing there is no re-
source accounting or limiting implemented.

However the goal is to have a fine grained resource limit configuration, al-
lowing to keep VPS instances from affecting each other, but also making over-
commitment possible.

This will include limiting and sharing CPU and I/O bandwidth according
to configured constraints.

Specification of the Snapshot file format At the time of writing, VPS
writes e.g. a “struct proc” structure to the snapshot file as it is. On the restore
host this structure is read using the restore host’s definition of “struct proc”.
Therefore, if the two hosts differ in the definition of “struct proc”, data will be
interpreted in a wrong way most likely leading to a kernel panic.

A snapshot file format specification, including a version number, will de-
fine intermediate structures. This will make migration between hosts running
different FreeBSD versions and even between i386 and amd64 possible.

Support of architectures other than i386 VPS has only very little archi-
tecture dependent code. If development hosts, by means of physical or emulated
hardware, become available, porting can be done very easily.

Feature completeness On a long term view VPS will support virtualization
and live migration of any possible setup.



4.2 Potential use cases

Server consolidation The usual way of server configuration is to have one
physical host per task or service. Often this results in many servers which are
idling most of the time. On the other hand, putting too many tasks into one
installation makes maintenance much more difficult and prone to security issues
and misconfiguration.

The smart way is to setup a few VPS enabled servers and create one VPS
instance for each task or service. The system load can be distributed easily
by live migrating virtual servers as needed. Even hardware maintenance can be
done without service outage. All the affected virtual servers can be live migrated
to other physical hosts and moved back when the maintenance is finished. This
way saves hardware, rackspace and power.

Mass hosting VPS allows customers to have their own servers that behave al-
most like physical hosts, but cost the hosting provider only very little resources.
Due to the hierarchical nature of VPS, customers can even setup their own VPS
child instances in their instances, if allowed.

Separation of services While having more (virtual) servers means more
maintenance effort, security and manageability can be increased this way.

4.3 Call for participation

Testing VPS needs testing!
Patches and binaries as a drop-in replacement for FreeBSD releases are avail-
able at [3].

Development Any help in developing VPS is welcome. See [3] for more
information.

Bug reports Bug reports are welcome at [4].

References

[1] http://www.freebsd.org/

[2] http://www.freebsd.org/doc/en US.ISO8859-1/books/arch-
handbook/jail.html

[3] http://www.7he.at/freebsd/vps/
[4] http://bugzilla.7he.at/

10



