

There are a few areas that still need improve-
ment, however.
• The FreeBSD package team has plans for a
public ARM package repository, but it is not yet
available.
• Video and audio drivers have yet to be written.
• Expansion capes are not supported.

Your First FreeBSD Boot
To boot FreeBSD, you first build a micro-SD card
with FreeBSD installed, and then boot the BBB
from the micro-SD card.

What you’ll need:
• BeagleBone Black.
• 5v power supply or Mini-USB cable.
• Micro-SDHC card 4GB or larger.
• Serial cable such as Adafruit #954 or FTDI TTL-
232R-3V3 (optional but highly recommended).

1. Build or Download a FreeBSD Image
Below, I’ll explain how you can build your own
FreeBSD image. To get started, you can download
an image from the FreeBSD.org website:

ftp://ftp.freebsd.org/pub/FreeBSD/snapshots/
http://ftp.freebsd.org/pub/FreeBSD/snapshots/
Caveat: “Snapshot” images are built from

whatever source happened to be current in the
FreeBSD development branch that day. Stable
images will be released as soon as FreeBSD 10
is finalized, which is expected to occur before the
end of 2013. Downloaded images are usually
compresssed; you’ll need to uncompress yours
before you can copy it onto a micro-SD card.

2. Copy onto a Micro-SD Card
The ‘dd’ utility is used for raw data copies such
as initializing a disk from a raw image. You first
need to connect the SD card to your computer
(likely using some sort of adapter) and identify
the correct device name.

The easiest way to do this is to
$ ls -l /dev
before connecting the SD card.
Then do
$ ls -l /dev
again after you’ve connected it; the new entry

should be obvious.
If the SD card is already formatted, you’ll see

several entries appear for each partition on the
card. Since we want to overwrite the whole card,
you need to identify the base device, which is
generally a couple of letters followed by a single
digit (e.g., “da7”, “mmc4”, or “sdhci0”).

For this task, you want to provide three argu-
ments to the ‘dd’ command: the input file (if),

the output device (of), and the block size to use
when copying (bs). You don’t have to specify a
block size, but the default setting results in very
slow operation.

For example, if your micro-SD is connected as
‘da7’, then the full command will look like this:
$ dd if=FreeBSD-BeagleBone.img
of=/dev/da7 bs=8m

Depending on how your system security is set
up, you will probably have to run this command
as root using ‘sudo’ or similar.

Once the micro-SD card is imaged, you can
insert it into the BBB.

3a. (Optional but Recomended)
Attach Serial Cable
Once you have the SD card built, you’re ready to
hook up the BeagleBone Black and boot
FreeBSD. Since FreeBSD doesn’t yet support the
HDMI output on the BBB, you should consider
using a serial cable so you can see what’s going
on. Without a serial cable, you can wait until it
boots and try to connect over SSH, but it’s much
harder to diagnose if anything goes wrong.

The BBB has a low-voltage serial interface that
requires a special adapter cable. Make certain
you are using a 3.3v adapter, since similar cables
come in 5v and 1.8v versions that will not work
with BBB (Figure 1).
3b. Open a Terminal Window
The serial adapter is powered by USB from the
host system, so it starts working as soon as it is

Figure 1. Adafruit #954 serial cable connected to BBB.

Jan/Feb 2014 29

plugged into the USB, even before the BBB has
power.

To use it from FreeBSD, use the ‘cu’ utility,
specifying the line speed of 115200 baud and
the appropriate “tty” device:
$ sudo cu -s 115200 -l /dev/ttyU0

Of course, you won’t see anything until you
actually apply power.

4. Hold the Boot Switch and Apply Power
At this point, you should NOT have any power
connected to your BBB. If you’ve already con-
nected a 5v power supply or a mini-USB cable,
then unplug it and read the following carefully.

(The detailed logic for when the BBB boots
from eMMC or micro-SD is a little complicated.
I’ve been confused many times when the BBB
booted from the wrong source.)

The “boot switch” determines whether the
BBB boots from eMMC (the default) or from
micro-SD (Figure 2).

To boot from micro-SD reliably, you must:
* Hold down the boot switch
* Apply power
* Count to 3
* Release the boot switch

The BBB power chip remembers the boot
switch status, so it will continue to boot and
reboot from micro-SD until you disconnect the
power supply entirely.

Hint: If you need to reboot, leave the power
connected and tap the reset switch (Figure 3),
which will reboot from the same source.

Hint: If you get random shutdowns and are
powering with a mini-USB cable, try getting a
separate 5v power supply. The BBB power
requirements are just at the edge of what stan-
dard USB ports will provide.

Hint: If you see the four LEDs start flashing
rapidly, you’ve booted the Linux image from
eMMC. Remove power, hold the boot switch,
and try again.

What You Should See
When You Boot
If you’re familiar with how FreeBSD boots on
i386 or amd64 PCs, then the BBB boot process
will look very familiar, although there are a cou-
ple of differences. Most obviously, the initial boot
stages are handled by “U-Boot”, a GPL boot
loader project that supports a wide variety of
hardware.

1. MLO/SPL: U-Boot First Stage
When the TI Sitara chip first initializes, it does
not have access to the main RAM. As a result,
the very first boot stage must fit into 128k of on-
chip memory.
U-Boot SPL 2013.04
(Aug 03 2013 - 21:27:30)
OMAP SD/MMC: 0
reading bb-uboot.img
reading bb-uboot.img

U-Boot provides a small program called SPL
which the TI Sitara chip loads from a file called
“MLO”. This program is just enough to initialize
the DRAM chip and load the main U-Boot pro-
gram from the micro-SD card.

2. U-Boot Main Loader
U-Boot is a GPL-licensed boot loader that supports
a wide variety of hardware. Although originally
developed for Linux, U-Boot’s robust hardware sup-
port, scriptability, and active community make it a
good choice for booting FreeBSD as well.

30 FreeBSD Journal

Figure 2. The boot switch is just above the
micro-SD slot.

Figure 3. The reset switch is in the corner of the
board at the Ethernet adapter end.

B E A G L E B O N E B L A C K

U-Boot starts by initializing the USB, network,
and MMC/SD interfaces.
U-Boot 2013.04 (Aug 03 2013 -
21:27:30)

... other messages ...
reading bb-uEnv.txt
reading bbubldr
240468 bytes read in 33 ms (6.9 MiB/s)
reading bboneblk.dtb
14210 bytes read in 7 ms (1.9 MiB/s)
Booting from mmc ...
Starting application at 0x88000054
...

Once it has the MMC/SD initialized, it reads
three files into memory.

* bb-uEnv.txt is empty by default, but you can
edit this to redefine the U-Boot startup
functions.

* bbubldr is the FreeBSD boot loader that will
be run next.

* bboneblk.dtb is the DTB file described
below.

3. About the DTB File
Operating systems for newer embedded proces-
sors are increasingly using a “device tree” file—
sometimes called a “flattened device tree”
(fdt)—to initialize the kernel. This file lists all the
peripherals and helps the kernel decide which
drivers to enable. Device trees are compiled: The
source version is called DTS and the binary com-
piled version is called a DTB file.

The U-Boot initialization checks which hard-
ware you are currently running and then loads
the appropriate DTB file into memory. This data is
not directly used by U-Boot or by ubldr, but is
eventually passed to the FreeBSD kernel. The key
advantage of this arrangement: The exact same
kernel can run on both BeagleBone and
BeagleBone Black since key configuration such as
the amount of RAM and number of drives is pro-
vided by the DTB.

Eventually, the FreeBSD/ARM developers hope
to have a single GENERIC kernel that boots on a
number of boards. This requires more work on
the kernel to ensure that the various board sup-
port routines can coexist. It also requires more
work on the boot loader side to ensure that all of
the various loaders correctly provide a DTB file to
the kernel.

4. FreeBSD Ubldr
U-Boot knows a lot about the BBB hardware and
how to initialize it, but does not know anything
about the FreeBSD kernel and modules.

So the BBB uses U-Boot to load “ubldr”. This
is essentially the same as “BTX loader” used to

boot FreeBSD on i386/amd64, but with a few
changes so that it works with U-Boot instead of
the PC BIOS (hence the name “ubldr” for “U-
Boot compatible LoaDeR”).
Consoles: U-Boot console
Compatible API signature found
@8f246240
Card did not respond to voltage
select!
Number of U-Boot devices: 2
FreeBSD/armv6 U-Boot loader, Revision
1.2
(root@fci386.localdomain, Fri Aug 16
12:59:51 PDT 2013)
DRAM: 256MB
Device: disk
Loading /boot/defaults/loader.conf
/boot/kernel/kernel
data=0x449864+0x17d3c8
syms=[0x4+0x82890+0x4+0x4ec85]
Hit [Enter] to boot immediately, or
any other key for command prompt.
Booting [/boot/kernel/kernel]...
Using DTB provided by U-Boot.
Kernel entry at 0x80200100...
Kernel args: (null)

5. Load loader.rc, loader.conf
Ubldr pulls in a lot of standard FreeBSD configu-
ration. In particular, it reads loader.conf and pos-
sibly loader.rc. These can be used to load kernel
modules into memory so they are available when
the kernel first boots.

6. Load FreeBSD Kernel
Ubldr can now load the FreeBSD kernel proper.

7. Start FreeBSD Kernel
Once everything is ready, ubldr actually starts the
FreeBSD kernel. The last lines printed by ubldr
indicate how it is going to launch the kernel:
Booting [/boot/kernel/kernel]...
Using DTB provided by U-Boot.
Kernel entry at 0x80200100...
Kernel args: (null)

8. Initialize FreeBSD Kernel
Unlike ubldr, which relies heavily on U-Boot, the
FreeBSD kernel runs completely on its own.

So it must first set up its own memory man-
agement and console handling. Once that is
done, the kernel can show its first message:
KDB: debugger backends: ddb
KDB: current backend: ddb
Copyright (c) 1992-2013 The FreeBSD
Project.
Copyright (c) 1979, 1980, 1983, 1986,

Jan/Feb 2014 31

32 FreeBSD Journal

1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University

of California. All rights reserved.
FreeBSD is a registered trademark of
The FreeBSD Foundation.
FreeBSD 10.0-CURRENT #0 r254265: Fri
Aug 16 12:58:43 PDT 2013
root@fci386.localdomain:/usr/..../src/
sys/BEAGLEBONE arm

The kernel then proceeds to use the device
tree data to identify each system that needs to
be initialized.

9. Start FreeBSD userland
After the FreeBSD kernel has finished initializing
everything, it mounts the root filesystem so that
it can load the first programs from the SD
filesystem.

Here are the last messages printed by the
kernel:
Trying to mount root from
ufs:/dev/mmcsd0s2a [rw,noatime]...
warning: no time-of-day clock regis-
tered, system time will not be set
accurately
(In particular, the warning here is expected, since
the BBB does not have a battery-backed RTC.)

If you’ve used FreeBSD or Linux or any similar
system before, the remaining boot steps should
be quite familiar: The rc system runs a bunch of
scripts to set up various standard systems,
including network services such as SSHd and
NTPd. The very first time you boot, this can take
a little while, since some of these services need
to set up their initial configurations. Most obvi-
ously, the SSHd service needs to create encryp-
tion keys for this particular machine.

Finally, the system is ready to accept logins.
Wed Sep 4 00:46:40 UTC 2013
FreeBSD/arm (beaglebone) (ttyu0)
login:

Most BBB images are set up to automatically
configure the Ethernet port and start sshd.

So you should be able to connect remotely
using SSH at this point as well.

Using FreeBSD on the
BeagleBone Black
The BBB runs a completely standard FreeBSD
system, so if you’re comfortable with FreeBSD
on i386 or amd64, then you should feel right at
home.

Here are a few notes to help get you started:
Ethernet: The network interface is “cpsw0”.

You can configure it with the ifconfig command
or edit /etc/rc.conf to set it up on every boot.
Most FreeBSD images should have DHCP
enabled by default.
Time: Since the BBB does not have a battery-
backed clock, you’ll need to either set the time
manually on boot-up or use NTP to set the time
from the network.
Disk: The external micro-SD interface is called
“mmcsd0”. The standard FreeBSD images for
BBB are formatted with two partitions:
* mmcsd0s1 is the FAT slice with U-Boot and
other boot files
* mmcsd0s2 is the slice used by FreeBSD
The root partition on mmcsd0s2a is generally
formatted with Soft Updates + Journaling
(SU+J). SU+J allows the system to reboot quickly
when power is removed and reapplied.
eMMC: The 2GB built-in eMMC chip is available
as “mmcsd1”. By supporting 8-bit transfers, it is
significantly faster than the micro-SD interface.
The BBB ships with a Linux distribution installed
on the eMMC, but you can easily reformat this
and use it as an extra drive for FreeBSD. Soon,
we expect to be able to install FreeBSD and
boot it directly from eMMC.
SU+J: The BBB doesn’t have an Off button; you
usually just remove power. This does lead to
data loss if you have software running when
you disconnect power. Using “UFS Soft Updates
with Journaling” (UFS SU+J) does not prevent
data from being lost, but does seem to do a
good job of avoiding fatal filesystem corruption.
Swap: Although 512MB RAM is sufficient for
many purposes, you will probably want to enable
some swap. For a number of reasons, people are
generally using a swap file on the root partition
rather than a separate swap partition.

You can use “swapctl -l” to find out if the
image you are using already has swap config-
ured. If not, it’s easy to add a swap file:
1) Create the file: dd if=/dev/zero

of=/usr/swap0 bs=1m count=768
2) Add the following line to /etc/fstab and

reboot:
md none swap sw,file=/usr/swap0 0 0
Ports: If you have network access, then
installing a ports tree is quite simple:
$ portsnap fetch
$ portsnap extract

You can then build and install ports as usual.
For example, to install the Apache web server:
$ cd /usr/ports/www/apache24
$ make
$ make install

B E A G L E B O N E B L A C K

The online magazine
published six issues per y
acked with the unique, pr
tical, quality content you’
expect to find at the mo
highly re garded confe
ence s.theartie s.th
cles features
in FreeBSD Jou journal
written by many of thof t
same people you’d see de
ering the most important

Editorial Board
• JOHN BALDWIN
• DAICHI GOTO
• JOSEPH KONG
• DRU LAVIGNE
• MICHAEL LUCAS

• KIRK McKUSICK
• GEORGE NEVILLE-NEIL
• HIROKI SATO
• ROBERT WATSON

It’s an App

FreeBSD Journal is the voice of the
FreeBSD Community and the best way to
keep up with the latest releases and new
developments in FreeBSD.

If you haven’t already
subscribed, NOW is the time!

available for iPad, iPhone,
Kindle, and all Android devices at your
favorite merchant store below.

inquiries@freebsdjournal.com

1-888-290-9469

For Subscription and
Advertising Inquiries:

FreeBSD® Journal is published by The FreeBSD Foundation

TM

J O U R N A L

SU BSC R I B E NOW !
TM

version available
at freebsdfoundation.org/journal
contains a rich mix of the funtionality
and features found in the app.

A Browser-Based

A one-year subscription
(6 issues) to the browser version
or the mobile app is $19.99 and
begins with the current issue.

Single copies and back issues
are available at $6.99 each.

FOR EDITORIAL INFORMATION:
editor@freebsdjournal.com

Packages: The FreeBSD package team does plan
to provide ARM packages compatible with the new
package-management tool ‘pkg’. As of September
2013 this hasn’t yet been implemented.

A number of individuals have had good suc-
cess using Poudriere to automatically build their
own package sets.
USB: USB generally works well on BBB. USB
drives, USB network adapters, and printers have
all been used successfully. There is one caveat,
though: You should not plug any USB peripherals
into the BBB unless the BBB is connected to a
separate power supply. If you are powering the
BBB from a mini-USB cable and try to connect
any USB device, the BBB will most likely shut off.

Updating FreeBSD
Once you have FreeBSD up and running, you can
download the FreeBSD source code and rebuild
directly on the BBB.

Caveats:
* A full system rebuild on the BBB can take as
much as two days, depending on a number of
factors.
* A full source checkout is over 2G, so won’t fit
on the eMMC.
* FreeBSD-CURRENT (also called the ‘head’
branch) is the current development branch; it has
the newest features and the newest bugs.

You can use the ‘svnlite’ command (which is a
standard part of FreeBSD now) to check out the
source code from the FreeBSD project’s
Subversion repository:

$ svnlite co http://svn.freebsd.org/base/head
/usr/src

$ cd /usr/src
Read /usr/src/UPDATING, especially the sum-

mary information near the end that outlines com-
mon upgrade scenarios. Generally, a full upgrade
from source looks like the following:
$ cd /usr/src
$ make buildworld
$ make kernel
<reboot>
$ cd /usr/src
$ mergemaster -p
$ make installworld
$ mergemaster
<reboot>

The UPDATING file also explains how to do
partial updates, kernel-only updates, and some
techniques for doing partial upgrades.

Building Your Own
FreeBSD Image
If you are comfortable with the process for build-
ing and upgrading FreeBSD from source code,
you can use the Crochet tool to build a custom
BBB image on a fast i386 or amd64 machine.

In particular, this makes it easy to track the
most recent changes to FreeBSD as the support
for BBB continues to improve.

Detailed instructions are at:
https://github.com/kientzle/crochet-freebsd;
the following is a quick summary:

1) Get Crochet. You’ll need the devel/git pack-
age installed, and then you can get a copy of the
Crochet scripts:

$ git clone https://github.com/kientzle/
crochet-freebsd

To update, use the “git pull” command from
inside the source directory.
2) Create a configuration file beagleblack.sh
with the following contents:
board_setup BeagleBone
option ImageSize 3900mb
option UsrSrc
option UsrPorts
FREEBSD_SRC=${TOPDIR}/src

The ‘option’ lines here preinstall a full FreeBSD
source tree in /usr/src and a full ports tree in
/usr/ports. Omitting those lines will result in a
smaller image.
3) Build the image:
$ sudo ./crochet.sh -c beagleblack.sh

The script first checks whether you have all the
necessary source code and tools. If any are miss-
ing, it will print instructions for obtaining them.
Once it has all the pieces, a fast PC can compile a
complete FreeBSD system and assemble the
image in about an hour. •

Tim Kientzle has been a FreeBSD committer for
10 years and a FreeBSD user for much longer
than that. Most recently, he’s been working on
image-building tools and boot support for
BeagleBone and Raspberry Pi.

