
4 FreeBSD Journal

‘s Deal
on FreeBSD

I t’s 7:27a.m., I’m queued up at a metering
light on my way to work, and my phone
lights up with a message from one of

database team’s senior engineers:
“Do you have some time for debugging

session? We most likely have a BSD issue.”
I grimace and start to think about what he

could be stuck on. I’m not exactly sure where
their team is in the execution of their current
project either, so I can’t easily speculate. The
thing is, I don’t normally hear from this guy
unless he’s really stuck on something. So
hearing “a BSD issue” when I’m not even
halfway through my first cup of coffee isn’t
giving me a warm and fuzzy feeling, and it is
definitely not how I want to start my day.

My calendar is jammed full of meetings including a presen-
tation and two deliverables, not to mention the odd escala-
tion that shows up and requires immediate attention. But a
“BSD issue” sounds like a rabbit hole of an issue and oddly
specific.

I fire back, “I’m about to get on the freeway, can you call
me?” He responds, “Can you get back to me when you are
in front of tmux(1)?”

“Uh oh,” I think, “this is probably something legit.”
It’s been a few months since we’ve run into any issues, so

maybe we’re due for an OS bug. Operations is in the
process of finalizing its latest iteration of a database con-
tainerization platform, so hearing we’ve stumbled across
something doesn’t shock me since we’re still working

Familiar look and feel,
slightly different trim,
now with enhanced results.
By Sean Chittenden

•

through some details of the current iteration. After all, we were
playing with VIMAGE at one point so it’s not out of the question.
Further, with over five petabytes of storage on the most recent
deployment, it wouldn’t surprise me to find out we’ve also just run
across something run-of-the-mill this morning that comes with hav-
ing a large deployment.

As I’m rounding the last corner on my way to the office, I get a
text message from Chris Schneider, manager of the global database
team, “Hey, Bob needs help and thinks he has a BSD issue because
he’s seeing a listen(2) queue overflow kernel message when
debugging the new service checker daemon.”

I think, “Whew! New code and it’s in the application's network
code, this should be easy.”

And that’s how it goes. Every few months as the footprint of
FreeBSD grows in the organization, we collectively stumble across
“new and exotic error messages” that we add to our repertoire and
around which we build processes and understanding.

Background
A little over a year ago Groupon began developing a next-genera-
tion database platform aimed at increasing reliability, reducing the
cost of operations, and adding resiliency to some of the anticipated
changes in the storage industry, notably the proliferation and wide-
spread adoption of solid-state drives (SSDs). When the database
project was initially started, my boss directed me to use SSDs
because he wanted to get away from some of the more expensive
flash memory technologies we already had in house. While the lega-
cy flash hardware had been adequate for years, its integrated OS
drivers and hardware have been operationally problematic and the
cost made it prohibitive to reasonably deploy throughout the entire
database tier. So off to work we went.

When building out large footprints, the law of large numbers is
not just a convenient theorem to cite in a discussion; it needs to be
a fundamental design consideration. The words “shouldn’t happen”
are taboo and a clear sign more research and analysis are required.
Like any other part of business, identifying both strategic and oper-
ational planning assumptions and managing the risk/benefit is criti-
cal. If, however, businesses do manage to incorporate the entirety
of potentially known issues or “risks” into their planning assump-
tions, they’re skilled, a bit lucky, and a little clairvoyant. If the plan-
ning assumptions don’t identify and consider all the known risks or
create the corresponding contingency solutions to make the risks
acceptable, there had better be good justification. In this case, the
level of planned consolidation (>15:1 reduction in hardware) and
operating efficiency gains that would come from moving off of
spinning media and over to SSDs was clearly a benefit; however, the
quantity of flash memory cells and the fidelity of the data were
identified as risks stemming from the change in storage media. We
knew this up front so we had to do something from the onset to
manage the identified risks.

In Operations some of our primary planning assumptions include:
a percentage of our servers die, hard drives fail, RAM develops sin-
gle-bit parity errors, and datacenters go dark. We understand and
plan for all these situations—spare servers, use of hot-swap hard

July/August 2015 5

6 FreeBSD Journal

drive bays, procure ECC RAM, and geographic
redundancy initiatives—and much, much more.
The introduction of SSDs (versus spinning rust)
introduced a substantive change to the operat-
ing model because the flash cell-based SSDs
have a dramatically elevated bit error rate (BER).
We knowingly understood this change in storage
media would result in a material increase in the
rate at which data would corrupt—rot—at rest.
In the case of bit rot, the law of large numbers
dictates it’s not a matter of “if,” but “when,”
and “how often.” This created the need to
update our team’s planning assumptions and risk
mitigation strategies.

The performance gains of moving from spin-
ning rust to SSDs are significant. Seek times on
10K RPM disks are on average measured
between 2 and 5 milliseconds, but the 99th per-
centile latencies can be measured in the tens or
hundreds of milliseconds. Moving from millisec-
onds (“ms,” one thousandth of a second) to
microseconds (“us,” one millionth of a second)
represents a three order-of-magnitude improve-
ment and this performance gain is now able to
be rolled out to all teams and applications, not
just the Tier-1 databases. And sure, the perform-
ance gains are nice for benchmarks, but for

engineering teams, performance gain translates
into a real-world efficiency gain which shrinks
development schedules. Inefficient queries that
were frequently cache-miss and would take
50–100ms now take 60–200us. CPU usage rises
to desirable levels and engineering teams don’t
have to worry as much about performance
efforts. In effect, use of SSDs allows us to trade
OpEx for CapEx by reducing the time required to
ship many products, but what’s the trade-off and
what does an organization do about it?

A year before Carnegie Mellon University and
Facebook pointed out in their fantastic study
published at the ACM SIGMETRICS ‘15 confer-
ence in June of 2015, “A Large-Scale Study of
Flash Memory Failures in the Field,” we were
toiling away with designs for the database plat-
form that would compensate for our observed
bit rot on SSDs. At the time, we were seeing
errors, but we didn’t know how widespread the
problem would be, just that we expect it to hap-
pen and therefore we had had to compensate
for this inevitability. When the CMU/FB flash
memory paper came out, their findings were
very much in line with what we had observed;
however, their testing methodology was much
more extensive and the results poignant. To sum-

GROUPON’s Deal on FreeBSD

Like What You’re
Reading Here?

FreeBSD Journal. It’s packed
with articles and columns that address the
entirety of the FreeBSD universe. You just
can’t go wrong! This online magazine is

available as an app (Amazon, Mac App Store
and GooglePlay) or as a DE browser-based

edition. Get the helpful information you need
to keep up-to-date in the FreeBSD community.

SUBSCRIBE TODAY! freebsdfoundation.org/journal

•

B

‘s Deal
on FreeBSD

through some details of the current iteration. After all, we were
playing with VIMAGE at one point so it’s not out of the question.
Further, with over five petabytes of storage on the most recent
deployment, it wouldn’t surprise me to find out we’ve also just run
across something run-of-the-mill this morning that comes with hav-
ing a large deployment.

As I’m rounding the last corner on my way to the office, I get a
text message from Chris Schneider, manager of the global database
team, “Hey, Bob needs help and thinks he has a BSD issue because
he’s seeing a listen(2) queue overflow kernel message when
debugging the new service checker daemon.”

I think, “Whew! New code and it’s in the network stack. This
should be easy.”

And that’s how it goes. Every few months as the footprint of
FreeBSD grows in the organization, we collectively stumble across
“new and exotic error messages” that we add to our repertoire and
around which we build processes and understanding.

Background
A little over a year ago Groupon began developing a next-genera-
tion database platform that was aimed at increasing reliability,
reducing the cost of operations, and adding resiliency to some of
the anticipated changes in the storage industry, notably the prolifer-
ation and widespread adoption of solid-state drives (SSDs). When
the database project was initially started, my boss directed me to
use SSDs because he wanted to get away from some of the more
expensive flash memory technologies that we already had in house.
While the legacy flash hardware had been adequate for years, its
integrated OS drivers and hardware have been operationally prob-
lematic and the cost made it prohibitive to reasonably deploy
throughout the entire database tier. So off to work we went.

When building out large footprints, the law of large numbers is
not just a convenient theorem to cite in a discussion; it needs to be
a fundamental design consideration. The words “shouldn’t happen”
are taboo and a clear sign more research and analysis are required.
Like any other part of business, identifying both strategic and oper-
ational planning assumptions and managing the risk/benefit is criti-
cal. If, however, businesses do manage to incorporate the entirety
of potentially known issues or “risks” into their planning assump-
tions, they’re skilled, a bit lucky, and a little clairvoyant. If the plan-
ning assumptions don’t identify and consider all the known risks or
create the corresponding contingency solutions to make the risks
acceptable, there had better be good justification. In this case, the
level of planned consolidation (>15:1 reduction in hardware) and
operating efficiency gains that would come from moving off of
spinning media and over to SSDs was clearly a benefit; however, the
quantity of flash memory cells and the fidelity of the data were
identified as risks stemming from the change in storage media. We
knew this up front so we had to do something from the onset to
manage the identified risks.

In Operations some of our primary planning assumptions include:
a percentage of our servers do die, hard drives fail, RAM will devel-
op single-bit parity errors, and datacenters will go dark. We under-
stand and plan for all these situations—spare servers, use of hot-

J l /A t 2015 2

I t’s 7:27a.m., I’m queued up at a metering
light on my way to work, and my phone
lights up with a message from one of

database team’s senior engineers:
“Do you have some time for debugging

session? We most likely have a BSD issue.”
I grimace and start to think about what he

could be stuck on. I’m not exactly sure where
their team is in the execution of their current
project either, so I can’t easily speculate. The
thing is, I don’t normally hear from this guy
unless he’s really stuck on something. So
hearing “a BSD issue” when I’m not even
halfway through my first cup of coffee isn’t
giving me a warm and fuzzy feeling, and it is
definitely not how I want to start my day.

My calendar is jammed full of meetings including a presen-
tation and two deliverables, not to mention the odd escala-
tion that shows up and requires immediate attention. But a
“BSD issue” sounds like a rabbit hole of an issue and oddly
specific.

I fire back, “I’m about to get on the freeway, can you call
me?” He responds, “Can you get back to me when you are
in front of tmux(1)?”

“Uh oh,” I think, “this is probably something legit.”
It’s been a few months since we’ve run into any issues, so

maybe we’re due for an OS bug. Operations is in the
process of finalizing its latest iteration of a database con-
tainerization platform, so hearing that we’ve stumbled
across something doesn’t shock me since we’re still working

Familiar look and feel,
slightly different trim,
now with enhanced results.
By Sean Chittenden

INTERACTING with the FreeBSD Project

T
hese past few months just flew by!
When you have a small staff, everyone
keeps busy reaching out and helping
the FreeBSD community. We couldn’t
accomplish what we do without a pas-

sionate, committed team of people who go
above and beyond what’s expected every day.
I’m proud of my team and am here to shed a
light on what we’ve done the past couple of
months to support and grow FreeBSD.

The FreeBSD Foundation’s sole purpose is to
support the FreeBSD Project and community
worldwide. We do this in many ways, such as
fund development projects, purchase equipment
to improve FreeBSD infrastructure, sponsor con-
ferences and FreeBSD developer travel expenses,
promote FreeBSD, and provide FreeBSD educa-
tion opportunities.

Bringing FreeBSD People
Together
We participated in two conferences in the last
couple of months. We were proud to be a
Platinum sponsor for BSDCan 2015 in June in
Ottawa, Ontario, Canada, as well as the primary
sponsor of the Developer and Vendor Summits
that preceded BSDCan. It’s hard to believe this
was our 10th year sponsoring this conference!

This is the one event that all Foundation
board members attend. When I first joined the
Foundation, 10 years ago, we started having our
annual board meeting during the conference. It
was more of a formality, because we had to
hold our elections every year. We’d pick a night
to meet for one to two hours to hold our elec-
tions and talk about FreeBSD development
work. We’ve grown so much that our annual
board meeting has become a formal all-day
meeting preceding the summits. Although it
makes for a long week, it is extremely produc-
tive for our team to work face-to-face on strate-
gic planning, long-term goals, project roadmaps,
fundraising, FreeBSD advocacy, and holding our
elections. We also elected the current officers

and directors (here), welcoming Benedict
Reuschling as a new director.

Following our board meeting (https://www.
freebsdfoundation.org/board), we all attended
the Developer and Vendor Summits. Ed Maste,
our project development director, ran the
Vendor Summit. This is an opportunity for devel-
opers and vendors to share their project direc-
tion and goals, and collaborate on projects of
broad or mutual interest. We spent half a day
discussing a list of technologies that companies
would like to develop and/or upstream to
FreeBSD.

During the Developer Summit, our marketing
director, Anne Dickison, presented “FreeBSD
Advocacy: How You Can Help Spread the
Word”. We had a great turnout for this, and it
ignited a lively discussion on how to promote
FreeBSD.

When Dan Langille opened the 12th annual
BSDCan conference Friday morning, the room
was filled with this magnificent amount of ener-
gy. There were so many attendees that an over-
fill room was set up.

During the opening session, I gave a short
presentation on the Foundation and what we do
to help FreeBSD. On my first slide I had a com-
ment from Dan’s Facebook page that said, “So
many smart people in one room. This is why I
attend BSD conferences.” It’s true—some bril-
liant people attend these conferences. One first-
time BSD conference attendee and travel grant
recipient said to me, “the BSD community is not
only incredibly smart, but also just as nice, and
they made me feel right at home.”

During the morning presentation I highlighted
two things that generated a lot of excitement
from the audience. One was our women-in-tech
initiative, where we are working on recruiting
more women to FreeBSD. The second was the
course curriculum work we are sponsoring, as
well as our ideas of bringing FreeBSD education
to college, high school, and middle school stu-
dents. I can’t tell you how many people
approached us afterwards, wanting to know

1 FreeBSD Journal

Inside The FreeBSD
Foundation / by Deb Goodkin

•

SUBSCRIBE!
TM

JOURNAL

J u l y / A u g u s t 2 0 1 5

FreeBSD in the
ENTERPRISE
� Groupon’s Deal on FreeBSD

� The Isilon ExperienceALSOReflections on FreeBSD.org Packages

TM

TMJOURNAL

https://www.freebsdfoundation.org/journal

July/August 2015 7

marize a few highlights regarding their findings:
• six different major SSD vendors
• uncorrectable bit error rate (UBER) is reasonably
common
• the most reliable storage platform saw at least
one UBER on 4.2% of its installation over a 12-
month period of time
• the least reliable platform saw at least one
UBER on 34.1% of its installation over the same
duration and workload

Clearly it’s still early days for SSDs and things
will improve over time, but the variance in UBER
across vendors is worth noting. For one work-
load, we selected a vendor’s platform and experi-
enced a >15% UBER in under a four-month peri-
od of time and expect that to settle out around
30–40% over a similar 12-month duration. One
nonscientific observation we have made is that
drives which throw UBERs will throw lots of
errors and that the distribution of UBERs is not
even across the fleet (i.e. some drives throw lots
of errors, others throw very few, or no errors –
we have not looked into why as of yet).

Maybe you are thinking to yourself, “So what if
a bit flips? It’s one bit. A gigabyte is 8-billion bits
and one bit "" shouldn’t actually affect anything.”
Out of 8-trillion bits, one bit is vanishingly insignifi-
cant, yet if a flipped bit happens to be in
/usr/local/bin/vim and it refuses to start, is
it still insignificant? What if the bit flipped in the
middle of a database table, how would you know?
The vim(1) example is not hyperbole, as it was
the first program to experience a detected UBER.
The error occurred three months after one of our
test machines was provisioned, it’s mtime was
three months in the past, and one day *BAM*.
That’s basically how bit rot happens: it silently, qui-
etly, and probabilistically kills a bit somewhere in
the middle of the night, and does so without any
fanfare or helpful error messages. Try playing
around with striped disks instead of mirrors in a
test environment for a few months. On a disk of
full of 1’s and 0’s, suddenly one of them flips. It’s
possible someone else on this planet is more
unlucky than you and you won’t have any errors,
but that level of denial won’t change reality. Sweet
dreams, everyone.

Assuming you didn’t pick the platform which
had just over a third of its drives throw UBERs,
what is more concerning was the incidence of
UBERs increased in proportion to the utilization
of the SSD. At the time of this publication and
according to the CMU/FB flash memory paper,
the probability of an SSD from one of the reliable
vendors experiencing at least one UBER over the
course of a 12-month duty cycle will stabilize

between one in 10 or one in 25. Depending on
the drive density in a server, that could be >1
UBER per server per year if you load up 24 SSDs
per server, or just over one in 10 servers if you
only put 2x SSDs per server. Are we feeling
squeamish about using SSDs in production yet? If
not, I encourage you to find the CMU/FB flash
memory paper and ruminate accordingly because
those error rates are too high to simply ignore.

Let’s put it another way: if bit rot represents a

needle in a haystack, is one needle in every other
bale of hay acceptable? How about one needle in
every two hay bales? What’s the probability of a
flipped bit causing a problem? How about a
dozen new needles every quarter added to every
hay bale? Would anyone notice or care? Does
your organization’s appetite for risk change if we
change the haystack metaphor from a sewing
needle to a used hypodermic needle from an
adjacent clinic? Thanks, but no thanks. Ignorance
is not bliss and we want certainty at the storage
layer for our databases, not chance and luck.

To put some context on the operating circum-
stances, Groupon’s core business is to provide a
commerce experience which delights our cus-
tomers. The business is such that we require
operational efficiency, reliability, and correctness.
In the previous 12 months ending in Q1 2015,
Groupon had $6.3B in gross billings. In Q1 of
2015 alone we sold 54M units (units reflect
vouchers and products sold before cancellations
and refunds), and have cumulatively sold over
800M units as of Q1 2015. At the end of Q1, we
averaged over 160M monthly unique visitors, and
better than 80% of our customers return to the
site to make future purchases (ForeSee Groupon
Customer Satisfaction Study, March 2015—com-
missioned by Groupon).

A significant portion of that business was
going to land on this new platform so correct-
ness wasn’t something we could be uncertain
about. We needed to plan for the future and
accept that when handling large amounts of
data, whatever could theoretically happen, will
happen, and will happen at a predictable rate.
To guarantee the fidelity of information on

One of the other interesting findings from the CMU/FB
flash memory paper was contained in section 4, notably

the period of early failures on a 720GB SSD starts to wane
around 3TB of written data. Taking RAID into consideration
and only 8x SSDs per host that would mean the current gener-
ation of SSDs should have a burn-in procedure write out just
over 24TB worth of data before putting the host into produc-
tion. As the technology becomes more robust, I’m not sure
this advice will remain accurate.

8 FreeBSD Journal

petabytes of data across arbitrary applications
that may or may not have the ability to check-
sum their own data, we needed some way of
mitigating the identified risks from SSDs.

The solution and outcome should be obvious
at this point, but the unexpected benefits along
the way—both technical and organizational—
have been numerous and remarkable.

FreeBSD to the Rescue
There are many technical problems in the world,
but many of the actual hard problems aren’t
technical so much as they are organizational.
The primary problem we needed to overcome
was the ability to run arbitrary applications that
had no capabilities to checksum their own data
at rest, and this technical problem required a
technical solution. In 2014 Groupon was a
Linux-dominant shop. After much cantankerous
wrangling, discussion, review, and testing of
alternatives, we settled on FreeBSD with ZFS as
the technical solution to the problem.

In the world of mature operating systems with
a great track record in production, it’s hard to
beat FreeBSD. Yet after we settled on and com-
mitted to FreeBSD as the solution to our imminent
and burgeoning bit error rate (“bit rot”) problem,
the next question was, “But will it blend?” We
had secured a means of solving our bit rot prob-
lem, but we weren’t sure how the rest of the
organization would adapt to an OS that wasn’t
Linux.

Technically what does it mean to change or
grow support for an additional operating sys-
tem? It turns out, not that much if you’re set up
to handle multiple distributions of Linux. “So
this project is going to support current growth,
integrate previous acquisitions, plan for future
application and product launches, AND change
operating systems for the database tier?” “Yup,
because the change isn’t that significant.” Sure,
it requires some investment up front, but the
analogy is closer to owning a Mercedes and buy-
ing a BMW and learning to drive the new car
effectively. The shifter is in a different place, the
radio is different, but both are fantastic pieces of
engineering, require gas, and get you to your
destination comfortably and in style.

No fsck’s Given
DTrace support, along with the ability to easily
roll a custom kernel and use of poudriere(1)
were some of the initial big ticket items that
showed up in the pro column when making the
decision. Without much fanfare, however, the

lack of file system checks fsck(1) showed up
as a strength, too, and now it’s one of the big-
ger items that no one misses or even talks about
anymore. Imagine running a fsck(1) on a near
line backup server with 288TB of storage. A tra-
ditional block-oriented file system would have
taken days or weeks to complete. With ZFS?
Zippo. Literally, no time. Such activities and con-
cerns are now anachronistic in our modern envi-
ronments and no one has waxed poetic about
their absence. Though at the time ZFS was intro-
duced, it was a question that frequently came
up because file system checks are one of the
tools administrators can use if they get into trou-
ble. Taking away a utility as ingrained as
fsck(1) highlighted one of the challenges of
organizational change: personal anxiety from
either learning something new, or trusting
something new in production needs to be con-
sidered.

During the lead up to committing to this direc-
tion, it was clear there was some apprehension
with some of the database administration team.
FreeBSD isn’t Linux, therefore it’s different, but
how different? Supporting a new OS isn’t neces-
sarily about making sure all programs compile and
run. Is FreeBSD different in a material way? Is the
transition going to be an overwhelming experi-
ence? What is the level of effort required for each
admin to become familiar with the new OS? When
will the uncertainty or doubts subside?

The answer in our case was to conduct a series
of 30-minute, online tutorials and open mic ques-
tion-and-answer sessions. In order to meet the
scheduling needs of a worldwide team, we
scheduled video conference calls every few days
at 6:30 a.m. PDT to meet and go over some
aspect of FreeBSD. To keep the sessions open for
candid conversation and focused on the learning
needs of each person, we broke out and grouped
attendance based on skill level and identified per-
sonality traits that kept the open mic Q&A pro-
ductive and bidirectional for everyone.

The first session was as simple as logging in
via ssh(1), logging in to MySQL and
PostgreSQL, running a few basic observability
commands such as top(8), iostat(8),
vmstat(8), and a few new commands such
as systat(8) and gstat(8). The over-
whelming response was, “This isn’t different
from what we’re used to.” To finish, we revisited
`top -m io` as a “one-more-thing” moment,
and that yielded a number of, “OH! You mean I
don’t have to XYZ anymore?” The unknown had
become exciting and now helpful to everyone’s
day-to-day activities.

GROUPON’s Deal on FreeBSD

Sessions after that moved quickly and covered
things like the base system versus ports(7),
using pkg(1), compiling a port by hand, and
the difference between /etc and
/usr/local/etc. Shortly after, we went in to
some of the more murky waters like pf(4) and
ipfw(8), and the history for why there is more
than one firewall in FreeBSD. During a few ses-
sions a little DTrace-based observability trickled
out here and there in order to show some latency
quantiles, counts, stack traces, etc. The intention
wasn’t to teach DTrace now so much as give per-
spective and instill the understanding that “if all
else fails, there’s always DTrace.” And if it does
come to using DTrace in production to identify a
problem, chances are you’re not having the least
stressful day of your life and other people will be
around helping out.

It wasn’t until around the fourth session that
we introduced ZFS. In that seminar we covered
snapshots, cloning, zpool scrub, and rolling
back. To punctuate one of the more profound
uses of ZFS, we had also replicated a small 1TB
database in advance. During the Q&A, we took a
ZFS snapshot without shutting the process down,
trashed 600GB worth of data with a mix of faux-
inept UPDATEs, DELETEs, and DROP TABLEs.
We then shutdown the database and rolled back
to a previous snapshot in about 30 seconds.
When we brought the process back up, it had
about 5 minutes worth of replication lag to catch
up on. Compared to other snapshot technologies
which incur a performance hit when taking them,
ZFS was like magic.

TIP: Use DTrace during a ‘zfs snapshot’
to measure VFS write latencies. Wow people with
write latencies measured in single-digit microsec-
onds (not milliseconds) (see Box 1).

Not bad for spinning rust. Did someone forget
to mention ZFS can also be really, really fast?

Everyone’s personal rate of adoption and rate at

which they address the anxieties from using some-
thing new is different, but there’s clearly a trajec-
tory for anxiety where it moves from the dread or
excitement of learning something new (frequently
both), to some feeling of unease due to a lack of
knowledge or experience, acceptance and embrac-
ing the new, and eventually ends when the day-
to-day activities that were semi-unsettling become
natural and comfortable. Changing technology is
not entirely about the technology, it’s about the
process of working with people and building the
necessary familiarity required to scale a technology
in an organization.

TIP: Do benchmarking and other high-glitz
testing to prove systems are not fragile while
working to buttress confidence and combat anxi-
eties. For instance, take a random write workload
from a Linux host with a Fusion IO card and move
it to FreeBSD, ZFS, and give the zpool only 16x
spinning disks. Suggestion: repoint a stream of
>100K ganglia metrics being written to RRD files
(see Box 2 next page).

Within a week most everyone’s personal
Rosetta Stone for translating between FreeBSD
and Linux was 50% complete, and in another
two weeks it was closer to 80%. Everyone
became pretty confident their muscle memory
would work equally well under pressure on
FreeBSD as well as on Linux. As it turned out,
FreeBSD is a fantastic crossover platform for pick-
ing up ZFS and DTrace without having to mentally
remap basic commands like top(1) to
prstat(1). The lack of friction for the basics is
one of the things that made this transition possi-
ble. The oddball question about file name limits
for includes in pf.conf(5), or other elements
of the stack get escalated up, but they’re usually
a by-product of making aggressive use of the var-
ious functionality in FreeBSD.

Coincidentally the start of this project coincid-
ed with a rash of OpenSSL vulnerabilities, so the

dtrace -s vfs-io-postgres.d
Latencies (ns)
postgres Write

value ------------- Distribution ------------- count
1024 | 0
2048 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1325
4096 |@@@@@@ 267
8192 |@@ 72
16384 | 0
32768 | 0
65536 | 19
131072 | 2
262144 | 0

1

July/August 2015 9

10 FreeBSDJournal

ability to build and deploy updated packages
quickly became one of the more welcoming fea-
tures. In a little over 40 minutes a full rebuild of
every package in use, with our own custom
patches, was made available for installation
worldwide. Twiddle a few knobs in a half-dozen
files, and you could integrate custom in-house
software, each package built in an isolated clean
room jail(8), complete with a good chain of
trust all the way back to the original package

author. This was an off-the-shelf win that came
by simply deploying poudriere(1), something
we completed in a matter of days. Ever since, we
only spend a few hours every month maintaining
a full release and this agility has been noticeable.
As one engineer put it, “poudriere(1) is a
thing of beauty, something to be admired.” The
package building infrastructure sets FreeBSD
apart compared to other maintained platforms.

Culturally we’d rounded the corner with the
flow and ebb of anxiety, people had adjusted
and were now flourishing. General concern for
FreeBSD in production had waned and we no
longer felt compelled to travel places with a lap-

top “just in case.”
Statements like “Whoa, we
couldn’t do that before”
were routine for a period of
time; then everything set-
tled down to a steady state
of productivity and
enhanced use of the plat-
form. We actually found a
good, sanctioned use of ZFS
dedupe (versioning histori-
cal packages), using
carp(4) on top of
vlan(4) tagged LACP
lagg(4) interfaces became
“the way,” etc. With lz4
compression we had more
than doubled our effective
storage capacity per server
(an important thing when
putting large numbers of
SSDs into production), yet
months after the initial test-
ing, deployment, and adop-
tion, we still hadn’t seen
the boogie man of bit rot.

Waiting in the Dark
The vision of the database project was this:
build a database platform robust to bit rot that
the database team could administrate. The sec-
ond half of that objective had been achieved, but
it wasn’t until a few months after the first set of
systems were provisioned that we had our first
catch. Ever since, every few weeks we see ZFS

detecting and repairing errors (see Box 3). Our
first "catch" happened months and months earli-
er and every time someone notices, we get to
say, “So that just happened,” and move along
with life without caring. 4.5K repaired? Probably
a single bit flipped. 45M repaired? A vendor’s
SSD controller probably repeatedly crashed
between scrubs and wrote out a reasonable
amount of bogus data. We can do all of this
because ZFS can detect corrupted bits and self-
heal for well-constructed zpools where enough
redundancy exists. Automatically. At runtime.
Transparent to the application.

We do scrub zpools, and some take ages to

$ zpool status tank | head -n 3
pool: tank

state: ONLINE
scan: scrub repaired 4.50K in 53h44m with 0 errors on Tue May 26 21:36:26 2015

zpool iostat tank 1
capacity operations bandwidth

pool alloc free read write read write
----- ----- ----- ----- ----- ----- -----
tank 958G 9.94T 0 210K 1022 330M
tank 958G 9.94T 1 207K 4.99K 326M
tank 958G 9.94T 32 30.5K 79.9K 46.9M
tank 958G 9.94T 22 9.62K 202K 15.9M
tank 958G 9.94T 15 10.2K 169K 16.5M
tank 958G 9.94T 36 10.5K 198K 14.9M
tank 958G 9.94T 6 10.8K 39.4K 17.4M
tank 958G 9.94T 12 189K 209K 298M
tank 958G 9.94T 1 210K 7.96K 340M
tank 958G 9.94T 10 218K 23.0K 355M
tank 958G 9.94T 2 224K 4.49K 359M
tank 958G 9.94T 6 228K 12.5K 367M
tank 958G 9.94T 7 140K 53.4K 225M
tank 958G 9.94T 9 26.9K 40.9K 44.0M
tank 958G 9.94T 0 9.43K 0 13.9M
tank 958G 9.94T 0 9.69K 0 16.3M
tank 958G 9.94T 1 74.0K 3.49K 120M
tank 958G 9.94T 6 226K 17.0K 366M
tank 958G 9.94T 0 225K 0 385M
tank 958G 9.94T 0 176K 0 515M
tank 958G 9.94T 0 84.7K 0 382M
tank 958G 9.94T 0 39.6K 0 163M

2

3

July/August 2015 11

complete. Big bricks take weeks to complete
(see Box 4). And others with SSDs still take a mod-
erate amount of time to run (see Box 5).

There is no mission-accomplished moment for
this effort. It’s just a vigilant, constant process of
iteration, reaction, optimizing for the future, and
increasing the rate at which we can iterate and
improve the current situation. But does it mean
we’ve been successful in mitigating the technical
risks? Yes. A resounding yes. The rate of iteration
started slowly as all of the tooling took hold, but
now that we’re on to our third, arguably fourth
iteration, the duration between iterations is get-
ting smaller and the improvements per iteration
are increasing. On the tech-
nical side we’re using
poudriere(1) to great
effect, deploying databases
using iocage(8), moving
to DNS-based failover mech-
anisms which will scale bet-

ter than prior layer 2 efforts using carp(4).
And that “BSD issue” from earlier? It turned

out to have been an issue with the service check
script, kinda. FreeBSD doesn’t require you to troll
through `netstat -s` to find the overflow
counters; instead, the kernel emits a helpful
error message that informs administrators the
listen(2) queue of un-accept(2)’ed
filedescriptors had overflown. During development
Bob had stuck a 60 second sleep(3) call in the
request handler to test something out, which is
fine, except the load balancer was hammering
away on the service checker daemon every sec-
ond, and with a listen(2) backlog of eight, it

% zpool status tank
pool: tank

state: ONLINE
scan: scrub in progress since Tue Jun 16 15:52:26 2015

1.58G scanned out of 1.17T at 5.56M/s, 61h9m to go
0 repaired, 0.13% done

pool: tank
state: ONLINE
scan: scrub in progress since Mon Jun 14 04:30:54 2015

6.14T scanned out of 108T at 16.8M/s, (scan is slow, no estimated time)
0 repaired, 5.71% done

4

5

WeCan’t DoThis

YOU!
PLEASE DO YOUR PART & DONATE TODAY

Your contribution makes a real difference!
Help the FreeBSD Foundation Support: •Project
Development •FreeBSD Advocacy •Growth of
the FreeBSD Journal •And More!

h t t p s / /www. f r e e b s d f o u n d a t i o n . o r g

Without

12 FreeBSDJournal

took exactly eight seconds before the kernel
started blasting out informational messages. The
fix was easy and took 20 minutes to add: mixin
a multithreaded socket handler and shuffle
around a few method calls to allow multiple
threads to participate in accept(2)’ing new
connections off of the socket(2). Sixty min-
utes from open to resolved. An easy problem
that didn’t actually require escalation, but a sub-
tle difference and a reminder of the conse-
quence of a dominant monoculture mindset.

Introducing technical changes to an organiza-
tion requires successfully navigating the neces-
sary personnel change elements. Taking into
consideration the needs of individuals who will
be long term participants or owners of the
resulting technical change should be a primary
objective of the entire change process. People
going through this change process will transition
through a series of phases before becoming fully
aligned with the change. This is especially true
when not all beneficiaries were participants in

the research or decision making process (this fre-
quently happens in large organizations). The
model we worked from was centered around
addressing the announcement and introduction,
personal anxieties, building technical and organi-
zational acceptance, followed by achieving
steady productivity and operational gains.
Consider bringing in external training to fill gaps
in understanding (many of which may transcend
the particulars of a specific OS, we did that for a
broader audience and it worked out well - thank
you Rich and Dru), set up small-group seminars,
and even share “war stories.” Once the organi-
zational changes were considered and taken
into account, the fruits of the technical change
were compelling for us and the extra tool in the
toolbox has proven to be valuable and has miti-
gated the risks identified in our planning
assumptions (see Box 6). Being able to do per-
formance monitoring for IO in the microsecond
level and having automatic self-healing from bit
rot? Yes, please. Oh, and sleep well. We do. •

JOURNAL NOW AVAILABLE AS A

The Dynamic Edition format
offers subscribers the
same features as the App,
but permits viewing the
Journal through your
favorite browser.

www.freebsdfoundation.org

Read It Today!

The DE, like the App, is an individual product.
You will get an email notification each time an issue is released.

A one-year subscription is $19.99, and a single copy is $6.99—the same pricing as the App version.

$19.99

$6.99
YEAR SUB

SINGLE COPY

TM

TM

DYNAMIC EDITION!

GROUPON’s Deal on FreeBSD

July/August 2015 13

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option bufsize=8m
#pragma D option switchrate=10hz
#pragma D option dynvarsize=16m

/* See /usr/src/sys/kern/uipc_mqueue.c for vop_read_args.
* Also see sys/uio.h.
*/

dtrace:::BEGIN
{

i = 60;
}

profile:::tick-1sec
/i > 0/
{

i--;
}

profile:::tick-1sec
/i == 0/
{

exit(0);
}

vfs::vop_read:entry, vfs::vop_write:entry
{

self->ts[stackdepth] = timestamp;
this->size = args[1]->a_uio->uio_resid;
this->name = probefunc == "vop_read" ? "read" : "write";
@iosize1[execname, this->name] = quantize(this->size);

}

vfs::vop_read:return, vfs::vop_write:return
/this->ts = self->ts[stackdepth]/
{

this->name = probefunc == "vop_read" ? "read" : "write";
@lat1[execname, this->name] = quantize(timestamp - this->ts);
self->ts[stackdepth] = 0;

}

profile:::tick-15sec
{

printf("--- Tick 15 --------------------------------\n\n");
printf("Latencies (ns)\n\n");
printa("%s %s latency (ns)\n%@d\n", @lat1);
printf("IO sizes (bytes)\n\n");
printa("%s %s bytes\n%@d\n", @iosize1);
printf("--\n\n");
trunc(@lat1);
trunc(@iosize1);

}

6

SEAN CHITTENDEN is an Architect for Groupon Production Operations (seanc@groupon.com).
He is a long-time participant of the FreeBSD (seanc@FreeBSD.org) and PostgreSQL communities ,
a 15+ year veteran of large scale web infrastructure including databases, networking, and storage.
In a prior life he owned and ran a datacenter and technology reseller whose clients included
Facebook and Yammer before becoming a ghost in the machine among Silicon Valley startups.

