
The Zookeeper
Data Model
At its core, Zookeeper provides just a few basic
operations that can be used to form many of the
design patterns that are necessary in a distributed
system. Zookeeper allows applications to commu-
nicate and coordinate with each other through
hierarchical, key-value stores referred to as
zNodes. The interface is done in such a way that it
closely resembles a typical UNIX file system, with
each zNode acting as either a file that is able to
store up to a megabyte of data or as a directory
that can contain multiple child zNodes. In addi-

4 FreeBSD Journal

Distributed systems are very complex beasts. While each system is built to solve a
unique problem, they all share a common requirement of having a way for all nodes to commu-
nicate with each other in a reliable, fault-tolerant, and scalable fashion. On the surface, the
problem of how to create a system that allows for reliable distributed communication and coor-
dination appears to be fairly trivial, and you will find no shortage of academic papers that
describe these algorithms in great detail. After a while, it may become tempting to just roll your
own solution, but ask anyone who has done this before and I am sure you will find no shortage
of horror stories that will quickly sour you on that idea. Since it is safe to assume that your time
will be better spent not having to debug subtle race conditions and deadlocks, one could make
a strong argument that you will be better served by deploying an existing solution that has
already seen widespread adoption by large, open-source projects, universities, and companies
across all types of industries. One such piece of software is Zookeeper, which is an Apache proj-
ect focused on building a robust system to implement distributed system primitives that develop-
ers can immediately put to use when writing a distributed application. Originally created at
Yahoo!, it is now an actively developed and vital component of the Hadoop ecosystem. While
many Hadoop-related projects make extensive use of Zookeeper, aside from Java, it has no out-
side dependencies, which makes it incredibly simple to introduce it into your environment.

S E E
T E X T
O N L Y

Apache
Zookeeper

Building Distributed Applications
with

By Steven
Kreuzer

Jan/Feb 2016 5

tion, each zNode has some additional metadata such as the ACLs, creation time, modification time,
and a version number associated with it.

Zookeeper allows for the creation of two different types of zNodes: persistent and ephemeral. When
a new zNode is created, it will be persistent by default. Just as the name implies, the zNode will remain
available until it is explicitly removed through the delete function. An ephemeral node will only persist
while the client who created the zNode is connected. If the client’s session is disconnected due to
either a crash or explicit termination, Zookeeper will remove the node. Ephemeral nodes are very useful
for providing host and service discovery and can also be used as a simple way to detect faults in a dis-
tributed system. While ephemeral zNodes can be created as a child of persistent zNodes, an ephemeral
zNode does not have the ability to have child zNodes. In Zookeeper, an ephemeral zNode will always
be a leaf node.

Zookeeper offers two additional components that, when combined with zNodes, allow you to easily
replicate very complex behavior in a straightforward fashion. Both persistent or ephemeral nodes can
be part of an atomic sequence whose names are automatically assigned a monotonic number which is
maintained by the parent zNode. Zookeeper guarantees that this 10-digit number will always be
unique and greater than any other child zNode created under the parent zNode. These sequential
zNodes can be used as building blocks to easily implement a distributed locking mechanism if your
application has such a requirement. Zookeeper also features the concept of a watch, which allows a
client to request that it be notified when a change is made to a specific zNode. Watches can be used
as simple mechanisms to create asynchronous, event-based systems and easily implement leader elec-
tion algorithms. A watch in Zookeeper is a one-time trigger. After a change occurs and the notification
is sent, the client must once again register the watch to receive notifications of future updates.

Getting Up and Running
Zookeeper was added to the FreeBSD ports tree in 2012, which makes it incredibly simple to get up
and running with a single instance for testing and development. Because Zookeeper was defined to
work out of the box and requires very little configuration to get going, it should not be necessary for
you to have to make any changes to the config file until you are ready to deploy into your production
environment.

pkg install zookeeper
sysrc zookeeper_enable=YES
zookeeper_enable: -> YES
cp /usr/local/etc/zookeeper/zoo_sample.cfg /usr/local/etc/zookeeper/zoo.cfg
service zookeeper start
Starting zookeeper.

Once the server is up and running, you can connect to the server using the zkCli.sh command
and try out a few commands to verify that everything is working as expected.

$ zkCli.sh
Connecting to localhost:2181
Welcome to ZooKeeper!
JLine support is enabled

WATCHER::

WatchedEvent state:SyncConnected type:None path:null
[zk: localhost:2181(CONNECTED) 0] ls /
[zookeeper]

Let’s first start off by creating a new zNode called “test” and populate it with the data
“hello_word.” After that is done, we can list the contents of the root zNode and see that the new
“test” zNode exists.

6 FreeBSD Journal

[zk: localhost:2181(CONNECTED) 1] create /test hello_world
Created /test
[zk: localhost:2181(CONNECTED) 2] ls /
[test, zookeeper]

The contents of the “test” zNode can be retrieved by issuing a get on the zNode. In this example the
string “hello_world” along with some additional metadata about the zNode itself will be returned.

[zk: localhost:2181(CONNECTED) 3] get /test
hello_world
cZxid = 0x6
ctime = Tue Dec 29 15:39:07 GMT 2015
mZxid = 0x6
mtime = Tue Dec 29 15:39:07 GMT 2015
pZxid = 0x6
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 11
numChildren = 0

The contents of the “test” zNode can also be updated using the “set” command. You will notice that
after the command is run, metadata such as “mtime,” “dataVersion” will also automatically be updated
as well. Once the update has completed, another “get” can be issued to verify that the contents of the
zNode have been modified.

[zk: localhost:2181(CONNECTED) 4] set /test freebsd_journal
cZxid = 0x6
ctime = Tue Dec 29 15:39:07 GMT 2015
mZxid = 0x7
mtime = Tue Dec 29 15:49:46 GMT 2015
pZxid = 0x6
cversion = 0
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 15
numChildren = 0

[zk: localhost:2181(CONNECTED) 5] get /test
freebsd_journal
cZxid = 0x6
ctime = Tue Dec 29 15:39:07 GMT 2015
mZxid = 0x7
mtime = Tue Dec 29 15:49:46 GMT 2015
pZxid = 0x6
cversion = 0
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 15
numChildren = 0

Once this zNode is no longer needed, a “delete” can be issued to completely remove the zNode from
the data store.

Jan/Feb 2016 7

•

[zk: localhost:2181(CONNECTED) 6] delete /test
[zk: localhost:2181(CONNECTED) 7] ls /
[zookeeper]

Moving into Production
While having a single instance of Zookeeper running in stand-alone mode is perfectly fine to use for
testing or to do some quick prototyping, it does introduce a single point of failure that should be
addressed before mission critical applications start to depend on it. Once you are ready to introduce
Zookeeper into a production environment, you will want to deploy it configured to run in what’s
referred to as quorum mode. While Zookeeper is used for coordinating distributed applications, it,
too, is a distributed application in which independent machines can form a cluster and elect a leader.
The cluster, which is referred to as an ensemble, will replicate its data to all members, and as long as
a majority of the nodes in the ensemble are online, all the services that Zookeeper provided will be
available.

When researching the requirements for an ensemble, it is recommended that you start with at least
three machines, but for most environments it is strongly encouraged to have at least five machines at
a minimum. The reason for this is that in a three-node cluster, the loss of a single node is tolerable
because two of the three remaining machines will still count as a majority. However, let’s say you
remove a node from the ensemble for regular scheduled maintenance and during this time you were
to have another node unexpectedly fail. Now that the quorum is lost, the remaining nodes will switch
to peer election mode and will disconnect existing clients and refuse new connections until a new
leader has been elected. This particular failure scenario can be avoided by starting with a minimum of
five nodes, which will allow the cluster to tolerate the loss of up to two nodes. While it is possible to
configure Zookeeper to operate in read-only mode if the quorum is lost, determining if this feature is
appropriate for your environment will mainly be driven by the requirements of your application, and as
a result, the default behavior is to simply stop serving client connections.

Since Zookeeper’s main focus is to ensure that data is distributed in a reliable manner, another rec-
ommendation when deploying an ensemble is to always have an odd number of machines. This pre-
vents the possibility of having a “split-brain” in which certain nodes become segmented from the
other nodes but continue to operate independently. In this scenario, these machines can fall out of
sync with the other half and once the failure has been resolved, the cluster won’t know how to recon-
cile the differences. To combat this, Zookeeper uses a majority count, and a new node will be selected
as the leader.

At the heart of Zookeeper is an atomic messaging system designed to keep each member of the
ensemble in sync. The node that is elected as a leader will receive all writes and is responsible for pub-
lishing those changes to all the other members acting as a follower of the leader node. Zookeeper
guarantees that data will eventually be consistent across all members of the ensemble by ensuring
that data is always delivered in the same order it is sent. A message will only be delivered after all
messages sent before it have been delivered, and while it’s possible that two clients may not have the
exact same point in time view, they will always observe the changes in the same order.

In quorum mode, all nodes have a copy of the same configuration file and will know about every
other machine that is a member of the ensemble. This is accomplished by appending additional lines
into the zoo.cfg file in the form of server.id=host:quorum_port:election_port.

cat /usr/local/etc/zookeeper/zoo.cfg
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/var/db/zookeeper
clientPort=2181
server.1=zook1:2888:3888
server.2=zook2:2888:3888
server.3=zook3:2888:3888

Within the ensemble, each node must have a unique id between 1 and 255 assigned to it. The
node is informed of its id by reading the contents of the “myid” file stored in the directory, which is

defined by the dataDir directive in zoo.cfg. The file consists of a single line
containing only the text of that machine’s id. For example, the id of the node
named zook2 is defined as 2 in the configuration file. On that node you can create
the myid file using the command echo 2 > /var/db/zookeeper/myid. Once this has been
done on each node in the ensemble, you can simply start up Zookeeper the same way you did when it
was configured in stand-alone mode. Each node in the ensemble will reach out to one another to run
an election to select a leader with all the other nodes becoming followers.

One of the big advantages is that it’s not much work at all to go from stand-alone mode on a sin-
gle machine to the highly fault-tolerant quorum mode distributed across multiple machines in your
environment. What’s even better is that from a developer’s standpoint, all the interfaces are still the
same, and so no additional changes to the application will be necessary. One of the most appealing
features of Zookeeper is that the system is designed to require little maintenance after the initial
setup, and all the complexity is hidden away from the end user, which makes it easy to integrate.

Scaling Zookeeper
Normally within a distributed system, you can scale up to handle an increase in workload by adding
additional capacity and spreading your application across more nodes. However, because each mem-
ber of the ensemble needs to reach agreement on every transaction, as you add more voting mem-
bers, the write performance of the ensemble will start to decrease. In addition to leader and follower
roles, Zookeeper also allows members to join the ensemble and act as observers. When assigned this
role, an observer will not take part in the agreement step of the atomic broadcast protocol. Instead, it
will just accept transactions that have already been agreed upon by other followers in the quorum.
The main goal of an observer is to provide read scalability without having to compromise on write per-
formance. In addition, because observers do not vote or participate in leader elections, they can be
more heavily loaded with read-only clients, which allows you to reduce the load placed on follower
nodes that are required to participate.

Configuring a node to act as an observer is a fairly straightforward procedure. The node needs to
be informed that it should act as an observer by adding the line peerType=observer into the con-
figuration file for that particular node. In addition, all the other nodes are informed which servers are
acting as observers by appending :observer at the end of the server config line.

server.1=zook1:2888:3888
server.2=zook2:2888:3888
server.3=zook3:2888:3888
server.4=zook4:2888:3888:observer

Once these configuration changes are in place you can restart the cluster normally and clients will
be able to connect to an observer node in exactly the same way they would if it was a follower node.

Conclusion
When done incorrectly, a distributed system can quickly become an unmanageable mess that is hard
to use and even more difficult to debug. As datasets become larger and workload demands become
more intense we are quickly approaching a point in time when to get more work done, your only
option will be to distribute the processing to as many machines on the network as possible. Because
of this shift in technology, it comes as no surprise that Zookeeper has quickly become such a popular
open-source project and has gained such widespread adoption. If you ever find yourself needing to
introduce complex functionality into your application, Zookeeper will quickly become an important
piece of infrastructure in your software stack. •

STEVEN KREUZER is a FreeBSD Developer and Unix Systems Administrator with an
interest in retro-computing and air-cooled Volkswagens. He lives in Queens, New York,
with his wife, daughter, and dog.

8 FreeBSD Journal

