
QTell us a bit about yourself.
How did you get started with

FreeBSD and what is your involve-
ment with the FreeBSD Project?

A I started as a FreeBSD user back in 1999
when I wanted to run my own IRC server.

After downloading the software from the
Internet, I found there was no .exe in the
archive. After asking around some, I was told
that I would need a “shell account” to be able
to run the software. I found a provider that
would rent me such a shell account for around
$10/month. Now-a-days you can rent a virtual
machine with about four times as much RAM
and even more CPU for about the same price,
even with 16+ years of inflation.

I was fairly comfortable with the command
line, but had never used anything other than
DOS and Windows, so there was a lot to learn.
As I learned more and more, I eventually stopped
renting shell accounts and started selling them.
In 2002 I started my own business renting IRC
servers and shell accounts, and quickly became
quite good at securing my servers against mali-
cious users. As my knowledge expanded, I start-
ed also doing consulting work, setting up web-
hosting stacks like Apache/MySQL/PHP for peo-
ple, custom compiled from source.

When I went to college, I was lucky enough to
go to a school that actually taught Linux and
BSD together. There I met some other BSD users
and first heard about this wonderful thing called
BSDCan. Sadly, rather than going to my first
BSDCan in 2006, I didn’t make it to one until
2012. When I finally did attend, it changed
everything. I didn’t get all that much out of my
first BSDCan, other than the excitement and
energy that was in the air, and meeting a few
people I had only heard about on mailing lists. I

decided that not only would I come back next
year, but I’d submit a talk, and share some of my
BSD sysadmin experience with the audience.
Why wait for next year? So I submitted the pro-
posal to EuroBSDCon 2012 in Poland, and was
accepted. Giving my first talk was quite an expe-
rience, but it was well received, and the audi-
ence asked insightful questions. I’ve been to
almost every BSD conference I could manage
since then.

In 2013, on the way to BSDCan, I decided that
the documentation in the FreeBSD Handbook on
ZFS was lacking a lot of detail, so I started writ-
ing. I attended my first doc sprint, and got up to
speed on how to write documentation for the
project. In August of 2013, a fan of my sysadmin
podcast, TechSNAP.tv, asked me about starting a
BSD-centric podcast. At first I didn’t think there
would be enough news to sustain a weekly
show, but after the viewer, TJ, who became our
first producer, and I began writing up overviews
of a few weeks’ shows, I quickly learned other-
wise. After a short search, Kris Moore was
tapped to be my cohost. Then, a few months
later, on my flight to EuroBSDCon 2013 in Malta,
I started looking at what could be done to make
the FreeBSD installer handle ZFS better. My first
draft was sloppy and full of errors, but an espe-
cially helpful committer worked with me to get it
into shape. Before long, it was part of the oper-
ating system. BSDCan 2014 included a big sur-
prise, being granted my doc commit bit. Shortly
after BSDCan 2015, I was granted my src com-
mit bit.

Now, I use FreeBSD every day at my day job,
ScaleEngine.com, a video streaming company,
except on Wednesdays, when I do the
BSDNow.tv podcast with Kris Moore. Then my
evenings are spent hacking on diverse projects,

In FreeBSD BY DRU LAVIGNE
this month

30 FreeBSD Journal

Over the next few issues, we’ll be taking a closer look at some of
the new features making their way into the 2016 releases and
the developers behind those features.

This month we chat with ALLAN JUDE. Allan has been a very
busy contributor since receiving his doc commit bit in 2014 and
his src commit bit in 2015. Several of his projects will make it
into this year’s 10.3 and 11 releases.

TM

S E E
T E X T
O N L Y

from documentation, to standardizing configura-
tion files across utilities, to improving the com-
mand line interface of ZFS, and adding features to
the FreeBSD bootcode and loader.

QFor some time, you have been working
with UCL. What is UCL exactly and how

does it compare with other configuration lan-
guages? What advantages does it provide over
traditional configuration files?

AUCL, or the Universal Configuration
Language, was designed by another FreeBSD

Developer, Vsevolod Stakhov
<cebka@freebsd.org>, for his own utility, rspamd.
It consists of a library, libucl, that can parse the
config files into objects that the application can
use to configure itself, and which can emit modi-
fied config files back out. The idea is to have a
config file that is easy for a human to read and
write, while at the same time being able to
manipulate it programmatically—a config format
that any experienced sysadmin or user will under-
stand and appreciate.

The UCL config syntax itself is based on the
syntax of NGINX and Bind, but slightly modified in
a way to make it also compatible with a loose
interpretation of JSON:

category {
key = value;

}

othercategory {
subcategory {

max_size = 10kb
expiration = 3d
array1 = [1, 2, 3]
array2 = [

thing1,
thing2,
thing3,

]
}

}

UCL syntax has a number of features that make it
easier for humans to write. It does not require the
semicolon terminator at the end of a line. It sup-
ports arrays, but unlike JSON, allows the last item
in a list to be followed by a comma, to reduce the
diff as items are added to the list. There is also
“syntax sugar,” where values can contain units,
like k (1000), kb (1024), h (hours), and d (days).
Booleans can be specified as any of: true/false,
on/off, or yes/no. UCL also supports comments, in
all three popular styles, including single line (//)
and multi-line (/* ... */) C comments, and the

standard hash (#) character that many config file
formats use.

The power comes from the native support for
variables, macros, and includes. Variables are set
by the application, for the user to use in their con-
figuration file, like $HOST for the system host-
name. Macros allow the application that is inter-
preting the configuration file to extend the config-
uration language with additional functionality. The
includes system allows additional files to be
included into the configuration. Includes supports
priorities, so the application or user can control
which value is used if a setting is defined in two
different bits of configuration. Support for GLOB
patterns and search paths allow multiple files to
be included, such as /usr/local/etc/appname/*.conf.
There is also support for remote includes, with
optional signature verification.

libucl itself can interpret UCL, JSON, YAML, and
Msgpack. It can also output the configuration in all
four of these formats. An application that uses
libucl to parse its config file, will accept any of
these; as to the application, they all look the same.

QFreeBSD is transitioning to using UCL. Can
you describe what users can expect in the

upcoming 10.3 and 11.0 releases of FreeBSD?

ATime constraints and compatibility concerns
mean that users of 10.3 will not see any

changes. However, starting with 11.0, a number
of config files will change format. For compatibili-
ty and ease of transition, all of the tools will con-
tinue to accept their original file formats, but will
gain support for the new UCL-based config files.
One of the first things I implemented as part of
the UCL conversion was a version identifier in the
config file that will make future transitions easier,
and allow applications to detect when they are
given a new config file. Users who upgrade an
existing machine to 11.0 will have the option to
just continue using their existing config files, or try
to convert them. Users who install a fresh 11.0
system will have the new UCL config files by
default. The only complication here is documenta-
tion: since the old format is still supported, the
documentation will need to be retained, if for no
other reason than to be a resource to those who
are converting their configuration files.

At this time, there is no plan for tools to auto-
matically convert old config files to the new for-
mat, but there is nothing stopping someone from
adding one to the ports tree.

My initial targets for conversion are:
newsyslog.conf, login.conf, jail.conf, pw.conf, and
wpa_supplicant.conf.

There are a lot of config files to cover, so I am
always interested in hearing from people who want

Jan/Feb 2016 31

to help, or even just comment on which config
files they would like to see converted next.

I would also like to revive my bhyveucl
(github.com/allanjude/bhyveucl) project.
Originally it was a shell script that read a UCL
config file and wrote the complex bhyve com-
mand line to launch the VM as described, and
configure the network as required. It was side-
lined when I joined a project to implement the
config file parsing directly in bhyve itself. That
project was put on indefinite hold at the request
of the bhyve authors, as they are working on a
number of enhancements, including USB sup-

port, a plugin architecture for networking and
storage, and a host of other things. These will
require a much more expressive config file than I
had originally designed. However, that work is
taking longer than expected, so there may be
value in reviving bhyveucl. Even once the work in
bhyve is completed, the configuration file may be
rather complex, and a utility like bhyveucl that
can take a simpler config file and convert it into
the more expressive “machine description” that
bhyve will require may still be of great value.

Q Improvements are also being made to
bsdinstall to provide support for ZFS boot

environments. For readers unfamiliar with this
feature, can you provide an overview of its
benefits? What type of work was needed to
add this support and when will it be available
to users?

AZFS boot environments are a way to have
multiple root (/) file systems and switch

between them at reboot in order to revert a
problematic upgrade, or to dual boot multiple
versions of the operating system. They can be
managed manually, but there is a utility in ports,
sysutil/beadm, that provides a nice user interface.
Each boot environment is a ZFS dataset,
although in most cases, it is a ZFS clone of the
existing file system, so takes no additional space
until changes are made. If you clone your / file
system before an upgrade, and the upgrade does
not work as expected, just use 'beadm activate
oldbootenv' and reboot, and your system will

boot from the clone of / from before the
upgrade. Other file systems, like users’ home
directories, are not affected.

The initial support for ZFS boot environments
was introduced to the FreeBSD installer in
FreeBSD 10.0. When you use the 'Automatic
root-on-ZFS' mode in the installer, it creates pool-
name/ROOT/default, which will be your first boot
environment.

There are two ways to use boot environments.
PCBSD creates a new environment before each
upgrade, starts a jail chrooted in that environ-
ment, and does the upgrade there, then reboots

into that environment. I personally prefer
to just use the 'default' boot environment,
and create clones of that before each
upgrade, in case I need to roll back.
Another key factor is deciding what
should be included in the boot environ-
ment, and what should remain untouched
when switching between them. The base
operating system (/bin, /sbin, /usr/bin,
/usr/sbin, and /etc) is usually included, but
it can depend on your environment if you

want /usr/local (where applications installed with
pkg are put) to be unique to each environment,
or stable across them all.

The problem with boot environments as they
shipped in 10.0–10.2 is that if you end up with
one that doesn’t boot correctly, the only way to
switch is by manually manipulating the loader
prompt, or booting from a live CD/USB and
switching the 'active' boot environment.

I have been working on an additional menu
option in the beastie loader menu that allows
you to select a different boot environment. This
allows you to quickly, easily, and safely switch
between the different root datasets at boot time.
What sets this apart from the way it is currently
done in PCBSD with GRUB, or in IllumOS, is that
rather than reading the list of boot environments
from a configuration file, the list is generated by
examining the ZFS pool itself, so the list is always
up to date.

The other complication is encryption. If the
user GELI encrypts their ZFS pool, they currently
require a UFS partition, or a second not-encrypt-
ed ZFS pool to sort the kernel on, so that sup-
port for GELI encryption could be loaded to
decrypt their file system. In both cases, it is not
possible to support boot environments, because
the kernel does not reside on the boot where the
environments were created.

I have been working on solving this issue by
implementing support for GELI decryption in the
bootcode and loader. I hope that this work will
also make it into 10.3. This will allow booting

32 FreeBSD Journal

At this time, there is no plan for tools to
automatically convert old config files to the
new format, But there is nothing stopping
someone from adding to the ports tree.”

—ALLAN JUDE

“

om a single encrypted ZFS pool, offering full sup-
port for boot environments, even in the presence
of encryption.

QYou have written extensively on ZFS,
including the ZFS chapter of the FreeBSD

Handbook and the ZFS Mastery series of books
with Michael W Lucas. How did you get interest-
ed in ZFS and what benefits has it provided to
you and your business?

AI first got interested in ZFS when my company
needed to store large quantities of video files,

in a flexible and safe way. I had little experience
with enterprise storage, having never used any-
thing more complex than motherboard BIOS-
assisted mirroring on any of my machines. I found
the concept of pooled storage and copy-on-write
to be very interesting and to fit our needs quite
well. The administration and configuration inter-
face for ZFS was also extremely easy and power-
ful, and I quickly became very comfortable with it.
The more I learned about ZFS, the more I wanted
to share it with everyone.

I have learned a lot since setting up that first
ZFS server in 2011. At our company each cus-
tomer gets their own ZFS dataset, so we can more
easily move customers between servers, manage
their snapshots independently, and assign quotas.
When I first deployed ZFS, we just had one big
dataset for video, and each customer had a direc-
tory. The problem was that if a customer purged a
large number of their videos, or cancelled their
account, we did not regain that space until the
snapshots were destroyed. We did not want to
lose the snapshots of our other customers’ data,
while at the same time being able to get that
space back, so we have transitioned to using a
separate dataset for each customer. We also
use the ZFS space accounting system to bill our
customers.

The biggest advantage to our business has been
the flexibility, resiliency, and tunability of ZFS. With
the tools provided by FreeBSD and ZFS, not to
mention DTrace, we can easily monitor and diag-
nose any performance problems. Having the
details of each disk directly exposed to the operat-
ing system, rather than hidden behind a RAID con-
troller has also saved time and made managing
failing disks easier.

QThe BSD Now podcast is into its third year.
Have you seen any trends in BSD usage or

perception over that time?

AWhen the idea for the show was first pro-
posed, I didn’t think it would work. After we

worked on it for a while and actually started it, I
was pretty confident in it. The biggest surprise to

me has been that neither Kris nor I have burned
out yet, and still enjoy doing the show each week.
I think a big part of that is the very positive feed-
back we get from the community. My personal
favorite part of the show is the interviews.

I have definitely felt an uptick in the perception
and adoption of BSD since the launch of the
show. We get feedback every week about some-
one new trying out, or switching over to, a BSD.
My concern is the retention ratio, how many of
them stick with it.

I wonder what things the projects can do to
help newcomers get over those initial hurdles, and
become lifetime users like I have. I think the
biggest complaint we see is hardware support on
newer laptops, and I hope that is something that
can be addressed going forward.

QWhat other projects are you working on or
plan to start in the near future?

AIn addition to more work on implementing
UCL config files in FreeBSD, and my command

line utility for working with UCL called uclcmd
(github.com/allanjude/uclcmd), I have a number of
ideas for new ZFS features. Along with a system to
track changes to the ZFS command line interface,
for use by scripts that automate parts of ZFS, I am
also working on implementing the additional
hashing algorithms that were recently added to
ZFS to the FreeBSD kernel, so they can be used on
ZFS. One of them, SHA512t256, which is a
SHA512 truncated to 256 bits since that is the
maximum size of the checksum in ZFS, is approxi-
mately 50% faster than a regular SHA256 when
calculated on 64bit x86 hardware. I have also
been working on converting utilities in FreeBSD to
libxo, a library that makes the utilities able to out-
put JSON and XML, in addition to the regular text
output.

My slightly loftier goal is a project called Zoro, a
successor to sysutil/zxfer, to manage ZFS replica-
tion. Zoro would manage snapshot creation and
retention, bookmarks, and replication. Some of
the ideas I have for it will be best implemented
with a little help from the ZFS side, so it might
lead to some new ZFS features as well.

I have my fingers in a number of different areas
of the system, either trying to make my own job
easier, allow FreeBSD to reach more of the poten-
tial I see in it, or solving problems that others
have, in hopes of increasing adoption of FreeBSD
and ZFS. •

Dru Lavigne is a Director of the FreeBSD
Foundation and Chair of the BSD Certification
Group.

Jan/Feb 2016 33

