TEXT
ONLY

34

In FreeBSD

this!dnth

BY DRU LAVIGNE

An Interview with Gleb Smirnoff

Over the next few issues, we'll be taking a closer look at some
of the new features making their way into the 2016 releases
and the developers behind those features.

This month we chat with Gleb Smirnoff, a member of the
FreeBSD core, release engineering, and security teams. He is
also a senior software developer at Netflix Inc.

Tell us a bit about yourself. How did

you get started with FreeBSD and what
is your involvement with the FreeBSD
Project?

| started using FreeBSD back in 2000, when |

was 18. At the university dormitory, we
were building a LAN and we used FreeBSD for
routing, Internet sharing, and web services.
Quite quickly I went from documentation to
sources. | was fascinated with netgraph(4). In
2004, | received committer access, and from that
point all my life is coupled with FreeBSD.

You have been working on the next gen-
eration of sendfile(2), which is typically
used to increase web server performance.
Please provide an overview of the original
sendfile(2) implementation. Does the new
sendfile(2) address any of its shortcomings
and what performance improvement does it
provide?
The original sendfile was quite straightfor-
ward. It locked the socket buffer to protect
it from any other writes, grabbed memory for
the requested data, and filled the memory with
data taken from a disk. Once data was read
from disk, it put the data into the socket buffer,
unlocked the buffer, and returned.

The shortcoming is that it takes time to read
data from a disk. As an example, let's assume it
takes 5 milliseconds to read the requested data
from a disk. This means we can do only 200
requests per second. To do more requests, we
need to spawn extra threads or processes for the
sendfile job. Actually, we will end up creating
extra contexts just for waiting on disk.

A high-performance web server, such as nginx,
is written as an event dispatcher which puts all of
its sockets and file descriptors into non-blocking
mode and then polls them. As a descriptor

FreeBSD Journal

becomes available for a read or write, the web
server sends or reads data and goes to the next
one. This works well when system calls are fast.
With modern demands, the original sendfile
became a bottleneck, particularly in regard to
number of connections and throughput.

This was a well-known problem even a
decade ago. FreeBSD used a special flag,
SF_NODISKIO, to tell sendfile to avoid reading
from disk if data is not cached, and to return a
special error code immediately. The web server
then pre-cached the data with a call to
aio_read(4) and retried the sendfile. Although
there is a lot of extra action in place, and there is
no guarantee that data will wait in cache for
sendfile, this approach worked much better than
letting the original sendfile block on disk.

We decided to make it even better. The idea is
that sendfile will not wait for disk to read the
data and will return immediately. This means
that the web server doesn't stall for several mil-
liseconds and can go forward working with the
next descriptor. In short, that is the whole idea,
but the implementation is not as simple as the
description.

Were substantial changes required to

the FreeBSD kernel or any of its subsys-
tems to implement the new sendfile(2)? Did
you come across any unexpected bugs dur-
ing the implementation?

Yes, the changes required were substantial.

First, we needed to create an asynchronous
interface in the kernel to read the data. The orig-
inal sendfile(2) talked to disk similar to a
read(2) syscall, using the VOP_READ
filesystem operation. This was already wrong,
since the interface is designed to copy out data
to userland, which in principle is what sendfile is
meant to avoid. The original sendfile pre-wired

pages that correspond to the data read, then ran
VOP_READ with copy out to nowhere. As a side
effect, that made pages paged in, and thus ready
to be sent to a socket. Thus, we decided not to
delve into the VOP_READ ASYNC interface, but to
instead use VOP_GETPAGES, which is designed
exactly for bringing individual pages into memory.
We implemented VOP_GETPAGES_ASYNC and
built the new sendfile around it.

Second, substantial change affected socket
buffers as we put data into a socket, but the data
isn't ready yet. Since the pages aren't yet read
from a disk, we can’t send them. But they must
occupy their place in the socket to preserve correct
sequencing of data in a socket. When accounting
for socket buffer limits, we also must account for
that data. This all required bringing a notion of
not ready data in socket buffers and functions to
write it and to later activate it.

Speaking of bugs: of course, during experi-
ments we found a lot of them. Who doesn’t? An
interesting one was an arithmetic bug in the
vnode pager haspage () that was inherited
from pre-FreeBSD times, when it suggested that it
can read beyond the end of a file. We were the
first to extensively use this function, which is why
we found the bug after 20 years. It was fixed in
FreeBSD commit r282426.

The new sendfile(2) was a joint effort

between NGINX Inc. and Netflix. Why was
FreeBSD chosen as the reference implementa-
tion and are there plans to port this system call
to other operating systems such as Linux?

FreeBSD is used in the heart of Netflix

OpenConnect CDN', which streams data to
Netflix customers all over the world, being the
world’s largest source of traffic on the Internet. So
we were not building a reference implementation
of the new sendfile just for fun or as a thought
experiment; rather, we were improving the
OpenConnect software, so that a single server can
serve more data. This resulted in improving
FreeBSD itself.

There are no plans for porting this to other

operating systems on our side. We are focused on
FreeBSD.

As a developer at Netflix, you have the

unique opportunity to work with a CDN
designed to push massive amounts of Internet
traffic using FreeBSD. Were other FreeBSD
improvements needed to manage the scale

required by Netflix, and does Netflix upstream
most of its improvements for the benefit of the
FreeBSD community?

Yes, we have made a lot of extra changes to

FreeBSD to serve our traffic. And yes, we are
trying to upstream all of them. The process isn't
easy though. The quality standards for open-
source code are actually higher than for produc-
tion code. In production, you care only about the
architecture you are running on, and you don‘t
care about others. You care only about your work-
load, and you care only about those parts of an
operating system that you use. To upstream some-
thing, we need to address all other platforms,
workloads, and possible users of APIs and stan-
dards. At the same time, adopting our code to
meet open-source standards must not degrade
performance for our case. Sometimes satisfying
both internal and open-source demands at the
same time appears difficult.

Nevertheless, the process of upstreaming our
improvements goes on. Follow commits from
emax@, gallatin@, glebius@, imp@, Istewart@,
rrs@, and scottl@ to see what is going on for
FreeBSD 11 and 12.

Are you working on any other interesting
projects?
Right now, | don't have any big projects in my
queue, but there is a lot of interesting stuff
from my colleagues at Netflix.

For example, there is SSL_sendfile(), built
on top of the new sendfile. The idea is that once a
TLS session is negotiated, the web server gives the
session key to the kernel, and then can use send-
file on a TLS socket. The implementation requires
two stages of asynchronous data processing: first,
disk read, and second, encryption. Only then is
the data in a socket activated.

There is also an I/O scheduler and massive
improvements to the VM subsystem, to TCP, to
storage drivers, and to NIC drivers. These topics
actually deserve separate articles, so | won't go
into detail and leave that to their respective
authors. e

' https://www.nginx.com/blog/why-netflix-chose-
nginx-as-the-heart-of-its-cdn/

Dru Lavigne is a Director of the FreeBSD
Foundation and Chair of the BSD Certification
Group.

March/April 2016

35

