
12 FreeBSD Journal

HIS ARTICLE DESCRIBES THE FREEBSD

OPERATING SYSTEM PORT FOR THE

CAVIUM THUNDERX CN88XX SYSTEM ON

A CHIP. THUNDERX IS A NEWLY INTRODUCED

ARM64 (ARMV8) SOC DESIGNED FOR THE

HIGH-PERFORMANCE AND SERVER MARKETS.

IT IS CURRENTLY THE ONLY ONE IN THE ARM

WORLD TO INCORPORATE UP TO 96 CPU

CORES IN THE SYSTEM ALONG WITH THE

TECHNOLOGY TO MAKE IT POSSIBLE.

ThunderX is up to date with the latest trends in
the computer architecture industry, including
those that are relatively new to FreeBSD, like SR-
IOV (Single Root I/O Virtualization), or completely
unique, such as ARM GICv3 and ITS.

The main focus here is to provide a bottom-up
view of how the FreeBSD platform support for
ThunderX was implemented and to depict the ben-
efits and pitfalls of the newly introduced ARMv8
technology in terms of the OS development. The

article also describes key components of the
ThunderX system and explains how they were sup-
ported in FreeBSD. Finally, possible areas of further
improvements are pointed out briefly.

INTRODUCTION
FreeBSD is undoubtedly the most recognizable
Unix-like operating system available. One of the
main areas of its deployment is the server market,
which is still dominated by Intel and AMD-based
computers. However, recently in the mobility
industry, the highly successful ARM architecture is
gaining interest as a foundation for high-perform-
ance server SoCs. A turning point in that field
was the emergence of a 64-bit ARM implementa-
tion (ARMv8) including improved technology to
obtain insane multi-core capabilities. Thus, it is
important for the FreeBSD community (developers
and users) to keep up with the growing interest
in ARM-based servers and supply the ecosystem
with an ARM64 BSD OS that will be on par with
the available Tier-1 x86 platforms.

The motivation behind the work on ThunderX
was driven by the actual market need for the
FreeBSD OS on that platform, the aim of which is

CAVIUM THUNDERX
SYSTEM ON A CHIP

FreeBSD on

By Zbigniew Bodek and Wojciech Macek

T

S E E
T E X T
O N L Y

May/June 2016 13

•

CONTINUES NEXT PAGE

to become a real alternative for energy-intensive
solutions. ThunderX is also the only ARM-based
chip in the world to scale up to 48 CPU cores
per socket with a possible dual socket configu-
ration (up to 96 CPUs). With the included hard-
ware accelerators for networking, storage, and
security, as well as powerful peripheral devices,
ThunderX is a perfect base for the server-orient-
ed OS such as FreeBSD and a great engineering
challenge for a kernel developer.

The support introduced here is based on foun-
dational work with emulation as a primary target
(ARM Foundation Model). Hence the platform
support for ThunderX was partly carried out in
parallel to the FreeBSD base system development
and occasionally was intertwined with it.
ThunderX was also the first hardware platform
to switch from the ARM emulator. The result is a
fully functional OS that supports key chip fea-
tures such as:

� PCI Express
� GICv3 + ITS
� SMP (single and dual socket)
� SATA
� Virtualized Network Interfaces

The description of the general FreeBSD kernel
implementation for ARMv8 architecture is beyond
the scope of this paper and is discussed only with
respect to the work on ThunderX support.

HARDWARE OVERVIEW
Contemporary ARM-based chips very much fol-
low current trends in the computer industry,
incorporating multiprocessor capabilities; high-
performance, peripheral devices; buses and
extensions, as well as various hardware accelera-
tors and virtualization technologies. The 8th
architecture revision (ARMv8) moved those con-
cepts to a new level by overcoming previous
architectural limitations. ThunderX is a good
representative of the new ARM chips genera-
tion, as it is the first to utilize majority of the
newly introduced features.

Core Complex and CCPI
The heart of the CN88XX SoC is a set of
Cavium proprietary ARMv8-compliant CPUs.
Each CPU has its own I-cache and D-cache but
they share the common 16MB L2 cache. A sin-
gle package can contain up to 48 CPUs organ-
ized in three clusters of 16 CPUs each. The core
complex can be connected to another CN88XX

processor using Cavium Coherent Processor
Interconnect fabric (CCPI). All CPUs in the sys-
tem are cache coherent in respect to L1, L2
cache, and DMA accesses. The system coheren-
cy capabilities are also extended across CCPI-
connected entities. Therefore, the dual socket
configuration yields a fully coherent system con-
taining 96 ThunderX CPUs. The potential multi-
socket configuration can incorporate four nodes
with a total number of 192 CPUs [1].

PORTING
The efforts of porting the FreeBSD operating
system to a new platform can usually be divided
into a few general stages:

� Toolchain and build environment support.
� Kernel loading and bootstrapping.
� locore.S and low-level operations. Kernel

start code and low-level machine bring-up as well
as basic cache maintenance, atomic operations,
synchronization primitives, etc.

� Elementary system operations.
These include virtual memory management
in pmap.c, exceptions handling, context
switching, and interrupts as well as system
timers and console support.

� Drivers for peripheral devices.
� Userland support.

Most of the listed steps had already been
implemented in FreeBSD, as a lot of work has
been put into running it on Qemu and ARM
Foundation Model. However, the real hardware
was still a huge unexplored area. Existing pieces
of the code provided a good starting point for
ThunderX support. The missing parts of the
development mainly concerned:

� System bootstrap.
Every real hardware device has its own quirks,
assumptions, and, most of all, custom
firmware. Even though ThunderX is an
ARMv8-compliant platform, it’s in fact a cus-
tom ARM implementation, which requires
some more care than generic Cortex- A53/
A57 tested on Qemu and ARM emulators.

� Interrupts handling.
A massive number of CPU cores and peripher-
al devices, as well as the PCI-centric architec-
ture demanded a completely new approach to
interrupts signaling and a number of changes
to both generic ARM64- and ThunderX-
specif ic code.

14 FreeBSD Journal

� PCI-express.
The connectivity between the ThunderX core
complex and peripheral coprocessors is almost
entirely based on the PCIe bus. Support for
the on-chip PCIe bridges hierarchy was critical
in relation to other integrated interfaces such
as SATA, network or USB.

� A complex network controller.
A powerful networking card with IO virtualiza-
tion and modular architecture.

� SMP operation with 48/96 CPU cores. Running
FreeBSD on a real hardware and in a multi-core
environment revealed a list of issues that need-
ed to be investigated and resolved.

SYSTEM BOOTSTRAP
A typical CN88XX boot scenario starts with the
on-chip Boot ROM. This stage is supposed to load
Boot-level 1 Firmware (BL1) from the SPI-connect-
ed FLASH, which will then load further BL2 and
BL3 Firmware, and, finally, the control over the
system is passed to the Cavium Unified Extensible
Firmware Interface (UEFI) bootloader. At that
point the ThunderX system and its interfaces are
initialized and the boot CPU core is in EL2 excep-
tion level (Hypervisor). In order to run FreeBSD,
ThunderX needs to load the kernel ELF file and
supply it with a machine description such as the
DTB (Device Tree Blob), available memory regions,
as well as information about the kernel location
in DRAM, etc. Hence the next step in the FreeBSD
boot process is the native BSD loader(8) which in
that case is executed in a UEFI runtime environ-
ment. loader(8) handles kernel acquisition and
jumps into its code. ThunderX uses genuine
ARM64 loader(8), so almost no modifications
needed to be made.

EARLY SYSTEM
INITIALIZATION
The very first kernel code being executed is the
one in locore.S. It performs three fundamental
actions:

� Puts CPU into a well-defined state.
� Prepares an execution environment for the

C code.
� Forwards information about the modules.

obtained from the bootloader.

The ARMv8 processors (in AArch64 state)
operate in one of the four maximum Exception
Levels: EL0-EL3, from which EL0 has the lowest
software execution privilege that corresponds to
the User Mode; EL1 can be called a Kernel Mode,
EL2 is a Hypervisor, and EL3 is used for ARM’s

TrustZone Secure Monitor Mode [3]. The start
code usually drops the exception level to EL1
(after performing an EL2-specific configuration).
At this point, the initial and identity (1:1) kernel
mappings are created, which will allow changing
the context to the kernel virtual address space
when the Memory Management Unit is enabled.
Before that happens, all settings related to
address translation, caching, and initial system
behavior (such as exceptions reception) are
applied. Finally, the kernel stack is configured and
CPU jumps to the early machine initialization in C
code.

ThunderX requires more settings during this
stage than the ARM Foundation Model. These
include:

� Enabling EL1 access to the Generic Interrupt
Controller’s CPU Interface.
By default, the CPU interface cannot be
accessed through System Registers from EL1.
Access permission has to be granted while still
in EL2.

� Enlargement of the virtual address space in
TCR_EL1.
On some variants of ThunderX, the physical
memory is mapped beyond 512GB. Therefore,
if the programmed address space is not big
enough, it is impossible to create an identity
mapping required to jump from the physical
to the virtual address space.

The changes, however, are not strictly
ThunderX-specific and will apply to any platform
with similar requirements.

INTERRUPTS DELIVERY
Exceptions whose purpose is to indicate to CPU
that a certain action took place are called inter-
rupts. There would be no reasonable multi-
threading OS without the interrupts support;
therefore, they are one of the most fundamental
elements of the system. Previous generations of
ARM processors often incorporated a so-called
ARM Generic Interrupt Controller (GIC) or other
proprietary implementation.

Exemplary ARM GIC consists of two main com-
ponents: Distributor and CPU Interfaces. Typically,
interrupt lines from the on-chip devices are wired
to the distributor interface, which then, according
to its configuration, routes the interrupt signals to
the appropriate CPU interfaces. If the interrupt
signaling is enabled, the CPU will receive a notifi-
cation on the appropriate interrupt line (IRQ or
FIQ). Finally, the CPU can acquire the interrupt
information, such as its number, from the CPU
Interface registers and change the pending state

May/June 2016 15

of the interrupt. This architecture works fine for
ARMv6/v7 processors but has some serious limi-
tations in terms of:

� Scalability.
Can route interrupts up to 8 CPUcores.

� Maximum number of interrupts.
Each interrupt requires a physical connection
to the distributor.

� No Message Signaled Interrupts support.
Cannot use in-band PCI interrupt signaling.

� Slow access to the CPU Interface registers.
Each interrupt requires at least a few read/
write sequences to the memory-mapped
registers (slow access to device memory and
possible TLB misses).

Generic Interrupt Controller v3
Platforms such as ThunderX require improved
interrupts handling to provide better SMP utiliza-
tion, support for PCIe devices, and minimal time
penalty per interrupt. These features were intro-
duced with ARM Generic Interrupt Controller v3
[2] in cooperation with the Interrupt Translation
Service. The contributed work includes full
FreeBSD support for ARM GICv3 and ITS along
with the ThunderX-specific quirks, but excluding
virtualization extensions.

This article describes the support for the cru-
cial GIC components only and does not cover the
implementation of the machine-dependent part
of the interrupts handling code that needed to
be redesigned for the purpose of this port.

Affinity-based Routing
Unlike earlier GIC architectures, GICv3 incorpo-
rates an additional, third component in the form
of Re-Distributors, which are memory-mapped
entities associated with every CPU in the system.
Moreover, the CPU Interface can now be
accessed through the CPU’s System Registers to
speed up interrupts handling after the core gets
notification. To overcome the interrupt-to-CPU
delivery limitations, the interrupt is now routed
based on the Affinity Hierarchy. This means that
the interrupt destination is now addressed by the
4-level CPU affinity number in the system. The
GICv3 driver configures all SPIs (Shared Peripheral
Interrupts) in the global Distributor, but PPIs
(Private Peripheral Interrupts), SGIs (Software
Generated Interrupts), and a new class of LPIs
(Local Peripheral Interrupts) are managed through
per-CPU Re-Distributors. Each Re-Distributor
needs to be enabled or woken up before it can
be used. Fortunately, GICv3 provides an auto-
configuration scheme that allows the OS driver to

iterate through a device’s memory-mapped
region, match the configurator CPU to a correct
Re-Distributor (based on the affinity), and per-
form appropriate actions. Once configured, the
Re-Distributor interface can be used in a similar
manner to the global Distributor.

Inter Processor Interrupts (IPI) can also be deliv-
ered based on the CPU Affinity Hierarchy.
Because the FreeBSD kernel does not enumerate
CPUs in SMP according to their hardware affinity,
it is required to save and match each CPU
address with the requested CPU group on every
IPI. Software Generated Interrupts (triggered by
the write to the CPU Interface register) are used
to perform IPI exchange.

ITS and Message-Signaled Interrupts
In a typical scenario the peripheral device
requests an interrupt in the Distributor that then
forwards it to the appropriate Re-Distributor.
Finally, the interrupt is signaled to the CPU
Interface. The alternative behavior, for which Re-
Distributors are used in GICv3, is interrupt rout-
ing that bypasses the Distributor. This is used by
MSIs and requires Interrupt Translation Service
(ITS) assist. Both ways are depicted in Figure 1.

ITS is a GICv3
extension that man-
ages routing and
migration of LPIs gen-
erated by any device
that can send
Message-Signaled
Interrupts. The
unique approach pre-
sented by the ITS
controller is that all
MSI-capable devices
can use a single
memory location
(GITS_TRANSLATER
register address) to
generate an interrupt.
The interrupt request
number and appro-
priate routing is
deduced based on the
interrupting device’s iden-
tifier and translation information programmed
into the ITS. The interrupt controller works closely
with the PCIe bus and IOMMU because unique
device IDs used in the interrupt translation
process are passed within the bus transaction
itself. The programming of the ITS is performed
via commands sent to the special Command
Queue and is required to set up the relation
between the PCI endpoint, LPI numbers (a.k.a.

Fig. 1: Interrupts distribution
using GICv3 and ITS.

16 FreeBSD Journal

interrupts collection), and the target Re-
Distributor.

The FreeBSD support for ITS consists of the
GICv3 subordinate driver (gic_v3_its.c) and
device methods for allocating and mapping MSIs
(pic_alloc_{msi, msix}(), pic_map_msi()).
The controller requires some portion of the sys-
tem memory to operate and this needs to be pro-
vided by the OS. The variety of possible ITS imple-
mentations implies the existence of auto-detection
features that need to be revised when configuring
the device. This includes not only the amount of
RAM to reserve for the controller, but also various
cacheability/shareability attributes, as well as page
sizes used by the ITS memory system.

The absolute basic configuration requires:

� Memory for ITS Private Tables
Private controller’s tables that are not accessi-
ble to the programmer.

� Memory for the Command Queue
A ring buffer for the ITS commands. Apart
from the memory reservation, OS software
must set the queue write pointer
(GITS_CWRITER) to the start of the queue.

� Memory for the LPI Configuration and
Pending Tables
The LPIs pending status is visible through the
bitmap in the Pending Tables. A particular LPI
can be configured (i.e., masked/unmasked)
using an array of bytes in the Configuration
Table.

Interrupt mapping is created per device and
per Re-Distributor (so in fact per CPU). The imple-
mentation-defined device identifiers are usually
based on the PCIe Bus:Device:Function address.
For ThunderX, this ID is more complicated due to
possible multi-socket configuration and requires
the additional Node:ECAM.number address.
Device IDs differ for the internal and external
PCIe units and this needs to be taken into consid-
eration by the ITS code. CPUs on the other hand
are matched based on their CPU affnity or Re-
Distributor physical address.

In order to create an LPI interrupt route the
software has to:

� Map interrupts collection to a Re-
Distributor (MAPC command) Managing
interrupts via collections and not stand-alone
entities is useful when migrating LPIs from one
CPU to another. This, however, does not
occur very often on FreeBSD, but still is re-
quired as a part of interrupts routing. An ITS
driver assigns collection IDs based on the

destination CPU IDs, so the subsequent inter-
rupt-to-collection mapping can be easily asso-
ciated with the interrupt-to-CPU assignment.

� Allocate and assign an Interrupt Trans-
lation Table (ITT) to a device (MAPD
command) The software has to provision
memory for an array of Translation Table
Entries; each mapping interrupts for a given
device. ITT will be associated with the device
ID after issuing MAPD command to the ITS.

� Reserve a range of LPI numbers Each MSI
vector is signaled to the CPU as an LPI. The
pool of available LPI physical numbers starts
with 8192 and is configurable through an
array of bytes in memory. Usually MSI-capable
endpoints will request a range of vectors
rather than a single interrupt. For that reason,
the driver needs to find a free range of LPIs
and allocate it for a particular device. LPI
bookkeeping is achieved by a bitmap in which
each bit represents an interrupt number. This
maps directly to the pool of free LPIs and por-
tions of the bitmap are assigned for each MSI-
capable device.

� Map MSI vector to the LPI, device ID, and
a collection (MAPVI command) The benefit
of the interrupt translation is that any virtual
interrupt number that is being sent by the
device can be mapped to a given physical
interrupt vector (LPI). Therefore, each endpoint
can simply use any convenient combination of
messages. The MAPVI command inserts an
interrupt translation and route to the appropri-
ate CPU into the ITT of the selected device.
This final step provides a full set of informa-
tion that allows for MSI delivery.

The ITS driver’s PIC methods provide the imple-
mentation of the described steps.
PIC_ALLOC_MSI/MSIX allocates the abstract
ITS device, which is in fact an Interrupt
Translation Table with a set of pre-allocated LPI
numbers. The main difference between MSI and
MSIX allocation is that MSIs are requested as a
range of vectors, whereas MSIX vectors are
requested one at a time. Common
PIC_MAP_MSI callback does exactly that: it
maps an MSI vector to the LPI for a given device.
Finally, the LPI needs to be unmasked in a
Configuration Table; however, this has to be initi-
ated from the top level PIC, which is, in that case,
the GICv3 driver.

Although very extensive, this design provides a

CONTINUES NEXT COLUMN

May/June 2016 17

flexible way of managing Message-Signaled
Interrupts and simplifies the interrupt resources’
assignment for each device by providing a single
MSI/MSIX triggering address, arbitrary selection
of MSI data, hardware translation to a physical
interrupt identifier, and a large number of sup-
ported devices and interrupt vectors.

SYMMETRIC
MULTIPROCESSING
The standard ARMv7-MP specification limits the
number of supported CPU cores to eight. Each
four cores are logically connected to create a
cluster. Then, up to two clusters can be com-
bined using the CoreLink interface that provides
a fully coherent 8-CPU core system. Some ven-
dors’ implementations of ARMv7 cores can pro-
vide up to 16-cluster scalability, which seemed to
be the theoretical limit for the architecture.
ARMv8 is a huge step forward. The interconnects
now are able to address each CPU by its logical
location using four-level CPU Affnity Address
(A 3:A 2:A 1:A 0) that allows a significant growth
in total core number.

SMP Bring-up
ThunderX CPU cores are managed through a
standard ARM Power State Coordination
Interface (PSCI). The relevant code was already
available in FreeBSD sources and was used as is.
The main work done to support SMP operation
on ThunderX was focused on resolving problems
in areas such as:

� System and TLB cache management
� IPI and interrupts handling
� Context switching
� Memory ordering
� Operations atomicity

For example, the system maintains cache
coherence between CPU cores, but only within
their shareability domain. If the common memory
mappings are not marked as shareable in that
domain, data copies seen by the CPUs may differ.
Similar results can be observed when one CPU
modifies shared Translation Table entries and
appropriate TLB maintenance operation is not
issued and propagated to the secondary cores. In
that case, CPUs can potentially see different
physical frames with different access permissions
at the same virtual addresses.

CCPI and Dual Socket Operation
ThunderX chips provide even more sophisticated
scalability. Based on the Cavium Coherent

Processor Interconnect (CCPI), two processors can
be connected creating a shared memory space.
The typical two-socket configuration supports 96
cores and up to 1 TB of system memory. From
the operating-system perspective, the complete
machine looks like it has two separate NUMA
(Non-Uniform Memory Access) nodes, each made
of 48 CPUs and half of the memory. The I/O
interfaces (e.g., PCIe, SATA) are accessible by
both nodes, but it is strongly suggested that all
I/O accesses be done by the socket owning the
corresponding interface. In that scenario, the
entire system performance and peripherals are
doubled. The dual-socket machine offers twice as
many PCIe links, Ethernet interfaces, etc., and
the interrupts are distributed among all CPUs
using two separate ITS units. For even bigger
workloads, the two-socket Cavium systems can
be connected using a low-latency Ethernet fabric.
This allows for hundreds of gigabits per second
of aggregated network bandwidth.

PCIE
The Cavium ThunderX machine provides a stan-
dardized interface to which all peripherals are
attached. The only I/O the CPU provides is a
modern PCIe 3.0 bus. All other devices (SATA,
Ethernet NICs, etc.) are typical PCIe endpoints
that can be easily detected by the operating sys-
tem and do not require any machine-specific
resource management code except for a single
PCIe controller driver. ThunderX provides two dis-
tinct PCIe interface types: internal and external.
The internal one is a reduced version of the
generic PCIe standard providing PCI-like logical
access to all peripherals inside the ThunderX SoC.
The external one, on the other hand, is a fully
compatible PCIe 3.0 link allowing easy connec-
tion of generic PCIe cards of up to x8 lanes.

The ThunderX driver is divided into three
parts: generic PCIe hardware accessors, FDT-con-
figured internal PCIe controller, and, finally, an
internal PCIe device representing an external PCIe
controller. The FreeBSD PCI subsystem takes care
of almost every aspect of PCI operation except
for some very hardware-dependent, low-level
functionalities. In order to fulfill these require-
ments, the driver needs to provide three things:
access to a device’s configuration space, resource
(bus addresses) allocations, and interrupt map-
ping. On the CN88XX platform, any access to
the internal configuration space is done using a
generic mechanism called ECAM (i.e., all configu-
ration headers of devices are mapped into the
host memory space; each memory access to that
location causes the controller to automatically
generate all PCIe requests for the user). External

•

18 FreeBSDJournal

PCIe configuration space is accessed using indi-
rect addressing supported by an external con-
troller. Second, the functionality that the driver
needs to provide is a resource assignment.
Fortunately, the Cavium UEFI configures all PCIe
trees and fills in every BAR with appropriate val-
ues. The only thing the driver needs to do is read
those (bus) addresses, mark them as used in the
Resource Manager (rman(9)), and return a result.
If a driver is not initialized (this happens for
example for NIC’s Virtual Functions), the con-
troller manually allocates the necessary bus space
and properly configures the BAR. The last thing
the driver provides is interrupt mapping.
Currently, the only supported interrupt types are
MSI or MSI-X, which require some quirks in ITS
as well.

The advanced architecture of ThunderX offers
a huge amount of internal PCIe devices (more
than 200 endpoints). To avoid creation of enor-
mous PCIe device trees, these devices are sepa-
rated into three different zones, each of which is
governed by a separate internal PCIe controller. It
is also worth noting that the external PCIe con-
troller is the PCIe device attached to the internal
PCIe bus. Although not intuitive, this solution
provides an easy way to support various hard-
ware versions of the device. Let’s imagine one
ThunderX chip has only one external PCIe avail-
able, whereas another might have three. Using a
conventional approach, each version of the hard-
ware would require a different machine descrip-
tion (i.e., DTB) file to make all the controllers get
detected and configured properly. But when the
external controller is an internal PCIe device, a
number of them are gathered on-the-fly using a
standard PCIe enumeration technique.

VNIC
The CN88XX chip has powerful Ethernet capabil-
ities that include 40 Gbps, 20/10 Gbps, and 1
Gbps interfaces. ThunderX introduces a flexible
and highly programmable design of the network
subsystem that allows for efficient hardware
resource virtualization and node-to-node connec-
tivity without using external switches. The main
objective of the presented work was to provide a
basic networking support for all types of avail-
able interfaces.

The networking subsystem in ThunderX is par-
titioned into a few, core components

� BGX - Common Ethernet Interface
� NIC - Network Interface Controller
� TNS - Traffic Network Switch

that, in the presented order, implement: the
MAC layer, the Network Interface layer, and
hardware switching between the mentioned
components and other CN88XX devices. The
high-level view of network subsystem architec-
ture is depicted in Figure 2. Moreover, NIC is a
SR-IOV [4] capable device, that can incorporate
up to 128 Virtual Functions, each providing full
network interface features. ThunderX contains 2
BGX instances that are connected to the NIC and
its VFs via a TNS unit. However, the described
FreeBSD implementation of the ThunderX net-
working drivers does not include support for the
TNS and its features. TNS Bypass logic is used
instead, which results in the direct connection of
BGX units to the corresponding NIC TNS inter-
faces as well as freedom of Rx/Tx queues assign-
ment to Logical MACs provided by the BGX.

The contributed work is located in the
sys/dev/vnic/ directory in the sources tree
and consists of the group of drivers, each imple-
menting the BGX, NIC, VNIC, and MDIO inter-
face. The MDIO setup and partially the BGX con-
figuration are based on the FDT description, cur-
rently the only method available.

BGX
The Programmable MAC layer is implemented in
the BGX controller. It is seen as a regular PCIe
endpoint and can be configured without the
explicit machine description provided; however,
BGX-to-Ethernet PHYs assignment needs to be

Fig. 2: Network subsystem architecture.

May/June 2016 19

presented to the driver. Each of the two built-in
BGX controllers can provide up to 4 Logical
MACs (LMACs) with maximum rate of 10 Gbps
each, or a single 40 Gbps LMAC. Any LMAC can
be connected to the arbitrary NIC’s Virtual
Function. LMAC types are selected by the low-
level firmware and FreeBSD driver retrieves this
information to proceed with the appropriate
setup.

The core BGX code, located in the
thunder_bgx.c file, is responsible for the gen-
eral interface bring-up, such as SerDes configura-
tion, detection of the LMAC type, and final
Ethernet interface configuration. Since BGX can
be attached to a variety of Ethernet PHYs, differ-
ent media connection types need to be support-
ed. High-speed interfaces, such as XLAUI, XAUI,
DXAUI, or XFI, are managed from the BGX driver;
however, low-speed SGMII uses a dedicated
MDIO driver located in the thunder_mdio.c
file. The latter exports KOBJ(9) methods for PHY
connection management (LMAC_PHY_
{CONNECT, DISCONNECT}) as well as link
state polling (LMAC_MEDIA_STATUS).

During a normal BGX driver operation, soft-
ware polls the MAC layer status to keep the NIC
Physical Function up to date. The polling itself is
done from the callout(9) context and is executed
periodically (once per two system ticks).
BGX/LMAC re-configuration is performed upon
link status change, such as speed transition, etc.
Current link status is stored in the driver’s soft-
ware context for each LMAC and is exported to
the PF driver on demand.

Physical Function
The Physical Function driver, located in
nic_main.c, cooperates with BGXes and TNS
to create a highly programmable network inter-
face. Unlike other popular NIC cards, the
CN88XX Physical Function does not provide net-
working capabilities, but rather is a resource
manager for subordinate Virtual Functions (VFs)
and an interface between the MAC layer (BGX)
and the networking interface layer (VNIC). PF
supports up to 128 Virtual Functions using PCI
SR-IOV [4] technology. The communication
between PF and VFs is held using private
Mailboxes for each VF. Any changes in the MAC
layer or configuration requests are signaled to
the VFs using Mailbox interrupt. The Physical
Function receives requests from the VFs in a simi-
lar manner.

The introduced FreeBSD driver uses a generic
PCI IOV subsystem to create and configure
Virtual Functions. The key step of the VF bring-

up is the pci_iov_attach() invocation. This
is done in PF’s nic_sriov_init() function,
called during the device attach procedure. At this
point, PF’s and VF’s so-called configuration
schemes (high-level interface options, such as
MAC address selection capabilities) are specified
and passed to the PCI IOV subsystem. The code
also needs to supply the PCI layer with the
IOV KOBJ(9) methods, such as:

� PCI_IOV_INIT(9)
Implemented by nicpf_iov_init(),
validates the number of requested VFs and
saves this value for later use when the actual
bring-up occurs.

� PCI_IOV_UNINIT(9)
Is supposed to disable previously enabled VFs.

� PCI_IOV_ADD_VF(9)
Is called when SR-IOV infrastructure is initializ-
ing a new VF. Options requested by the
pci_iov_attach(), can be used to set up
the VF’s parameters based on the configura-
tion schema.

During a normal driver’s operation, the PF’s
code periodically polls LMACs’ links through the
BGX interface and handles VF PF requests,
which may relate to the VF’s Queues configura-
tion, link/MAC status changing, etc.

Virtual Function
Virtual Functions implement the networking
capabilities of VNIC. VFs are able to perform
DMA transactions to and from the main memory
in order to transfer packet traffic. The presented
VNIC driver consists of the two logically separat-
ed parts: nicvf_main.c and nicvf_queues.c.
The first one performs the typical FreeBSD’s net-
work interface configuration and provides
ifnet(9) callbacks, such as if_init,
if_ioctl, etc. As the controller can handle
more than one transmitting queue, the driver
implements a multi-queue variant of the Tx path,
which uses the nicvf_if_transmit() func-
tion for the outgoing traffic. The Ethernet media
status is updated through the messages from the
PF, so a stub nicvf_media_status() func-
tion just exports this information to the upper
layers. The driver also supports hardware and
interface statistics that are refreshed periodically
in the nicvf_tick_stats() callout.

The second part of the driver, located in the
nicvf_queues.c, is responsible for the con-
troller’s resource allocation as well as packets
transmission and reception. In particular
nicvf_config_data_transfer() is the

�

20 FreeBSDJournal

focal point of the VF’s queues configuration.
Each Virtual Function contains a Queue Set

(QS) that consists of:

� 8 x Completion Queue (CQ)
� 8 x Send Queue (SQ)
� 8 x Receive Queue (RQ)
� 2 x Receive Buffer Ring (RBDR)

The Completion Queue contains data describ-
ing all completed actions, such as packet trans-
mission or reception. Other queues are assigned
by the Physical Function to the selected CQs,
potentially many-to-one.

The transmitter side uses SQ to describe the
egress data and actions that need to be per-
formed on the packet before it can be sent (e.g.,
L3, L4 checksums calculation). Each SQ is sub-
scribed to a target Completion Queue.

Receive Queues are VNIC’s internal structures
that describe how to receive packets. They need
CQ and RBDR assignments. More than one RQ
can be attached to both CQ and RBDR. RBDRs on
the other hand, describe free buffers in the main
memory that can be used to store received data.
Upon packet reception, VNIC moves the incom-
ing data to the free buffer provided by the RBDR
descriptor and returns its physical addresses to
the assigned Completion Queue. This could pos-
sibly be a drawback, as it is much more difficult
to locate a received buffer in the memory using

physical addressing rather than virtual. However,
this was resolved by allocating memory exclusive-
ly from the Direct Map, which is a continuous
region of linearly mapped memory. Thanks to
that, it is fairly simple to find the received buffer
in the virtual address space. Moreover, parts of
the ingress buffers, used by the RBDR queues, are
adapted to store a small descriptor containing
mbuf(9) information as well as bus_dma(9) relat-
ed data. This approach can significantly simplify
mbufs bookkeeping and reduce mbuf access
latency on Rx.

An interesting capability of the NIC’s Queue
Sets is that if the VNIC on a particular VF is not
enabled, its queues can still be used by another
operational VNIC. This makes it possible to assign
one Queue Set to a single VNIC, all Queue Sets
to a single VNIC, or anything in between. An
exemplary, yet possible QS configuration is
depicted in Figure 3. Currently, the VF driver uti-
lizes single Queue Set per VNIC by default.

AVAILABILITY
Support has been integrated into the mainline
FreeBSD 11.0-CURRENT and is publicly available
starting with SVN revision no. 289550. As of the
writing of this article, work on improving FreeBSD
on ThunderX is still in progress.

Future Development
Even though FreeBSD support for ThunderX is in
decent shape, there are a number of areas that
could benefit from further development. There
are also other functional issues that need to be
resolved before dual-socket configuration can be
fully supported in mainline FreeBSD. Some more
interesting areas of development are briefly
described below:

� Dual-socket Support in Mainline FreeBSD
To improve kernel performance, all physical
addresses from DMAP_MIN_PHYSADDR to
DMAP_MAX_PHYSADDR are mapped statically into
a continuous VA region called DMAP (Direct Map).
When the PA space is fragmented (as it is for
ThunderX in dual-socket configuration), the VA
DMAP range is huge and exceeds the limit that
the CPU core is able to address in 3-level
Translation Table mode. Semihalf implemented a
patch that resolves those issues by creating multi-
ple regions of DMAP range to save space and
allow for dual-socket device operation. However,

the lookups in DMAP arrays are likely to reduce the
performance, and hence the 4-level Translation
Table solution is the preferred one. However, the
current 4-level Page Tables implementation does
not allow for successful dual-socket boot. This is

Fig. 3: Exemplary NIC’s QS configuration

CONTINUES NEXT PAGE

May/June 2016 21

an area that needs to be reworked in order to support
two ThunderX nodes in the mainline.
� Multiple ITS Support
Currently, only the ITS attached to socket-0 is opera-
tional, but in the case of a dual socket system, this
resource is doubled. FreeBSD/arm64 lacks support
for multiple and chained interrupt controllers; there-
fore, changes in the interrupts handling code for
ARM64 architecture need to be applied.

ACKNOWLEDGMENTS
Special thanks to the following people:
• Dominik Ermel, Michał Mazur, Tomasz Nowicki,
and Michał Stanek (Semihalf) for their work and
commitment to this project.
• Ed Maste (The FreeBSD Foundation), Andrew
Wafaa (ARM), and Larry Wikelius (Cavium) for their
successful cooperation.
• Andrew Turner (FreeBSD Project) for insightful
reviews and advice.
• Rafał Jaworowski (Semihalf) for organizing and
managing this project.
• The success of this project is a joint work of the
Semihalf team, Andrew Turner, ARM, Cavium, and
The FreeBSD Foundation. The project was sponsored
by ARM, Cavium, The FreeBSD Foundation, and
Semihalf.•

Zbigniew Bodek, a Software Engineer at Semihalf,
focuses on BSD and Linux operating systems devel-
opment for ARM and PowerPC-based computers.
His main areas of interest are computer science,
microprocessor technology, embedded systems
and kernel development. He has been a FreeBSD
committer since 2013. For the last 1.5 years
Zbigniew has been involved in FreeBSD develop-
ment and optimizations for multi-core ARMv8 chips.

Wojciech Macek is a Software Engineer at
Semihalf, a small company in a frosty part of the
world. He is primarily interested in ARM architec-
ture, kernel internals and ultra-fast storage solutions.
His recent work has focused on enhancing and opti-
mizing FreeBSD for multi-core ARMv8 systems.

REFERENCES
[1] Cavium, Cavium ThunderX CN88XX Hardware
Reference Manual. (2015)
[2] ARM Ltd. Processor Division, GIC Architecture
Specification PRD03-GENC- 010745 12.0. (2013)
[3] ARM Ltd., ARM Architecture Reference Manual for
ARMv8-A architecture profile. (2013–2015)
[4] Intel, PCI-SIG SR-IOV Primer, 321211-002. (2011)

