
22 FreeBSD Journal

bhyve
ATA
Emulation

The bhyve ATA/ATAPI
emulation is part of a larger

project that aims to ensure back-
ward compatibility with older

versions of FreeBSD guests for Free
BSD Hypervisor (bhyve). Currently

the bhyve hypervisor emulates AHCI
standard for drive and atapi devices.

In order to support guests like
FreeBSD 4 that do not have ahci

drivers, it is necessary to
emulate an ATA/ATAPI

controller.

ATA

S E E
T E X T
O N L Y

May/June 2016 23

In this article we present the emulation of a generic ATA drive con-
troller connected on the PCI bus through a Host PCI Adapter. Both ATA
controller and Host Adapter are parts of our implementation that is
designed and developed from scratch. Using this emulator, we simulate
an ATA disk controller that is used by the guest ATA driver from the
bhyve virtual machine.

Currently bhyve supports any version of FreeBSD i386/amd64 since the
FreeBSD 8.0 release. The standard AHCI mode has also been supported
out of the box on FreeBSD since version 8.0. The scope of this article
presents a solution to provide compatibility of guest operating systems
with older versions such as FreeBSD4/5. Consequently, emulation of the
ATA Host Adapter Standard in bhyve hypervisor is required to support
guest operating systems that have drivers only for the ATA controllers.

We begin by presenting some of the relat-
ed work in ATA emulation, the motivation for
starting to write this driver from scratch. We
continue with an overview of device emula-
tion in bhyve hypervisor. Most of the devices
are emulated in userspace in usr.sbin/bhyve.
The other ones, such as the Programmable
Interrupt Controllers (PIC) and the timers, are
implemented into the kernel in vmm/io.
There are two categories of devices emulated
in bhyve, the ISA and PCI devices. Through
the ISA devices we enumerate the UART con-
troller and RTC (real-time clock) controller.
One part of the PCI devices is represented by
the virtio class containing block, net, and rng
(random entropy from /dev/random) subclass-
es. Also the AHCI controller is a PCI device
emulated in bhyve. Our implementation of
ATA Host Adapter will be emulated as a PCI
device through a register to the PCI con-
troller. That is also emulated in the bhyve
hypervisor.

We present some general information
about bhyve and some technical standards
such as PATA, SATA, AHCI, and PCI that are
related to the ATA emulation.

The ATA (AT Attachment) defines the

physical, electrical, transport, and command
protocols for the internal attachment of stor-
age devices to host systems [4]. There can be
Parallel ATA (PATA) or Serial ATA (SATA) inter-
face standards. Parallel ATA (PATA) is the
legacy AT Attachment, being an interface
standard for the connection of storage
devices like hard disks, floppy drives, and
optical disc drives in computers [7]. Serial
ATA takes the place of the former legacy AT
Attachment standard, offering many advan-
tages over the older interface: reduced cable
size and cost (seven conductors instead of 40
or 80), native hot swapping, faster data
transfer through higher signaling rates, and
more efficient transfer through an (optional)
I/O queuing protocol [8].

The Advanced Host Controller Interface
(AHCI) is a host adapter for the Serial ATA disk
drive controller. This specification defines the
functional behavior and software interface of
the Advanced Host Controller Interface, which
is a hardware device that is an interface com-
munication between the software and Serial
ATA devices. AHCI is a PCI class device that
performs movement data between the system
host memory and Serial ATA devices [1].

Introduction

by Teaca Ionut-Alexandru,
Mihai Carabas, and

Peter Grehan

For the Parallel ATA protocol there is also a
host adapter controller interface. The ATA/ATAPI
Host Adapters Standard specifies the AT
Attachment Interface between host systems and
storage devices using Direct Memory Access
protocol. The AT Attachment Interface can be
used in any host system that has a PCI bus and
storage devices connected to the processor [2].

Overview of the bhyve
Hypervisor Structure
bhyve stands for BSD hypervisor and is a hyper-
visor/virtual machine manager introduced into
the FreeBSD operating system. It is similar to
Linux KVM in that it runs on the host OS and
relies on modern CPU features such as Intel VT-
x, Extended Page Tables, and VirtIO network
and storage drivers.

bhyve is comprised of the vmm.ko loadable
kernel module, the libvmmapi library, and the
bhyve, bhyveload, and bhyvectl utilities. To use
any of these utilities, the vmm.ko module must
be loaded first. The bhyveload tool helps load a
FreeBSD kernel from a disk image. For example,
/usr/sbin/bhyveload -m 256 -d ./vm0.img vm0.

It shows the FreeBSD loader screen and you
should see the device /dev/vmm/vm0.

The bhyve tool is used to boot the VM with 2
vCPUs, the same 256M RAM and the tap0 net-
work interface.
/usr/sbin/bhyve -c 2 -m 256 -A -H -P -s
0:0,hostbridge-s 1:0,virtio-net,tap0 -s 2:0,
ahci-hd,./vm0.img -s 31,lpc -l com1,stdio vm0

After the VM has been shut down, its
resources can be reclaimed with:
/usr/sbin/bhyvectl –destroy –vm=vm0

The bhyve process starts by initializing the pci
controller in the init_pci function. This function
begins the bus enumeration to find all PCI
devices. It iterates through each bus, each slot,
and each function to find if there is a PCI
device. For example, if the input parameter of
the bhyve program is “3:0,ahci- hd,./diskdev”
(that means bnum = 0, snum = 3, fnum = 0),
the PCI controller associates this combination to
a custom device, and maps it with a pci_deve-
mu structure that has a pointer to the callback
which initializes its PCI device, in this case, the
‘pci_ahci_hd_init’ function. By calling this func-
tion, the ahci device is initialized by providing
identification information (the vendor and
device information and the class, subclass, and
progif information) to the pci_devinst structure.

The PCI emulator maps the (bus, slot, function)
combination with the pci_devinst structure, and,
in so doing, the identification information from
the pci_devinst structure belongs to the device
controller. Also, the pci_ahci_hd_init callback is
allocating the BAR register with baridx = 5 and
type = PCIBAR MEM32. The ahci driver from the
guest operating system programs the Base
Address Registers to inform the ahci device of
its address mapping by writing configuration
commands to the PCI controller.

Related Work
There are no other related implementations with
the ATA Host Adapter Standard emulated in the
bhyve hypervisor. There is an ATA controller
emulator implemented in the GXemul frame-
work that supports full-system computer archi-
tecture emulation. It is, however, almost impos-
sible to port this software in the bhyve sources
tree due to the fact that it uses a different appli-
cation interface for communication with the rest
of the system and because it is coded in the
C++ language. But we could use this software
for a better understanding of the ATA protocols
implemented there, like PIO, DMA, or other
information regarding the ATA commands.

There is an implementation of the Advanced
Host Controller Interface standard emulated in
bhyve. In order to understand the mechanisms
used in the emulation of the AHC standard,
documentation of this implementation needs to
be done.

In order to catch the host commands that are
sent to the AHCI controller, the pci_ahci module
in bhyve registers two handlers, pci_ahci_write
and pci_ahci_read, that are called whenever the
host software tries to address the ahci device
through the BAR registers. Basically these call-
backs read/write the value from the address
computed by the baridx = 5 register and an off-
set. The implementations of these callbacks are
dependent on the interface controller
(ahci/ata/atapi). They emulate by accessing the
iovec array from the prdt and writing to the
diskdev file descriptor. To complete, the com-
mand will call the ioctl system call for emulating
an interrupt. The io requests are created
through these callbacks. The blockif_req
requests are processed by the blockif thread in
the ata_ioreq_cb callback. The ata_ioreq_cb rou-
tine is completed through an ioctl system call to
the vmm.

24 FreeBSD Journal

May/June 2016 25

For the manipulation of io requests there are
two routines, blockif_dequeue and
blockif_enqueue. First there is an io request array
of elements and free/inuse queues grouped in a
blockif_ctxt structure. The blockif_dequeue rou-
tine is called from the blockif thread context and
it tails the first element from the inuse queue and
updates the free/inuse queues. The
blockif_enqueue gets a free element, fills it with
a blockif_req request, and updates the free/inuse
queues accordingly.

The DMA Write/Read requests are handled by
the ahci_handle_dma implementation that builds
up the iovec based on the Physical Region
Descriptor Table (prdt). These iovec requests are
processed in blockif_proc that briefly writes the
iovec array to the diskdev file descriptor using the
pwritev system call. The DMA command finishes
by triggering an interrupt.

Architecture
In this section we focus on the most important
design concepts at the base of implementation.
First, we explain the primary/secondary and mas-
ter/slave relationships followed by the register
descriptions involved in the emulator interface
and finishing with the interrupt-based mechanism
that is used in driver-emulator communication
and is the reason why the ATA emulator
approaches an event-driven architecture.

Master Drives and Slave Drives
Before presenting the architecture of the ATA
controller, let’s take a look at the primary/sec-
ondary and master/slave relationships and the
way the ATA emulator will be configured.

Most motherboards have two IDE interfaces
(primary and secondary), also known as channels.
In both primary and secondary IDE channels, only
ATA can be connected to, which means that IDE
only supports ATA/ATAPI drives. Each interface
could support two devices, for a total of up to
four drives. The two drives have to decide for
themselves how to share the same ATA channel.
To accomplish this, one drive on each channel is
designated as the “master” and the other drive
(if present) is designated the “slave.” So that
leaves us with the following possibilities:

• Primary Master Drive
• Primary Slave Drive
• Secondary Master Drive
• Secondary Slave Drive

Each drive can be either ATA or ATAPI.
Our PCI ATA adapter is emulating for the ATA

legacy driver located in sys/dev/ata/ata-pci.c
under the FreeBSD code base. After some investi-
gation of the ATA legacy driver, we have
observed that it is supporting only one channel,
meaning only two drives. For more details, please
see the ‘int_ata legacy(device_t dev)’ function
from the sys/dev/ata/ata-pci.c driver device.

With these in mind, we choose to configure
the ATA emulator using these parameters:
-s N:M,ata-hd,X,./DISK_MASTER,./DISK_SLAVE

or
-s N:M,ata-hd,X,./DISK_MASTER

where N:M is the pci slot information, X is 0 or 1
(Primary or Secondary channel) followed by the
name of the disks, the first one being the master
drive, and the second the slave drive. There might
be only one disk representing the master drive. In
any case, the emulator implementation is sup-
porting two channels, and holding different data
structures for both of the channels, even though
the guest legacy driver is using only one (Primary
or Secondary).

PCI and I/O Register
Descriptions
In order to emulate the ATA controller disk, two
sets of registers should be implemented as the
controller is going to be emulated through the PCI
bus, and so the commands sent by the guest driv-
er are provided using this interface, the PCI inter-
face. The set of adapter registers represent the PCI
space configuration which the guest driver reads
after the enumeration phase to detect controller
configuration details. See the Implementation sec-
tion of this article for details on the configuration
of these registers.

The ATA controller also contains a set of regis-
ters (ATA registers). Basically this set is configured
by the guest driver to communicate with the
drive controller. The implementation of the emu-
lator should provide such a register interface in
addition to the data structure necessary to main-
tain the controller states and to emulate the driv-
er commands. The ATA controller registers are
divided into two categories. The first represents
the ATA Bus Master Registers. The bus master
ATA function uses 16 bytes of I/O space. All bus
master ATA I/O space registers can be accessed as
byte, word, or double word quantities. The base
address for these registers is PCI BAR 4 [3]. The
second one represents ATA Channel Registers.

26 FreeBSD Journal

The Command Block registers are used for send-
ing commands to the device or posting status
from the device. These registers include the LBA
High, LBA Mid, Device, Sector Count, Command,
Status, Features, Error, and Data registers. The
Control Block registers are used for device con-
trol and to post alternate status. These registers
include the Device Control and Alternate Status
registers [5]. For the primary channel, these
registers are addressed by the BAR0 and BAR1
registers, and the secondary channel uses BAR2
and BAR3.

Interrupts
The design of the ATA emulator is based on an
event-driven architecture, where the events repre-
sent the write operations on the emulator regis-
ters that are actually the guest driver commands.
After these commands are interpreted and
processed, the state of the emulator is updated
accordingly. When the command is fully emulated,
the guest driver is notified by asserting an inter-
rupt. The emulator adapter is supporting two
channels conforming to the primary and second-
ary channel address and have a separate IRQ for
each channel. A parallel ATA controller is using
the 14 and 15 IRQs. The emulator is reserving
these IRQ numbers in the initialization phase and
asserts an IRQ at each command completion.

Block Device Emulation
For better management of the disk operations
like read/write calls, the ATA emulator uses the
implementation for block device emulations in
bhyve. An instance of the blockif_ctxt structure is
associated with each disk drive. Basically the ATA
emulator supports a maximum of two disk
drives—the master and slave drives. Hence, each
of them will be assigned one blockif_ctxt struc-
ture. In addition to the design reasons for decid-
ing on this API, the block model has an extra
thread for the read/write requests to be executed
in its own context. The public API for read/write
operations works by submitting block requests to
the block device queue which are pulled and
executed in the block context. We want to delay
the execution of the IO requests in the block
context as the virtual machine loop—where the
cpu instructions run—is single thread. If the IO
operations were executed in the same context as
the virtual machine loop, then the whole system
would get stuck.

LBA 28-bit Addressing
Logical Block Addressing defines the addressing
of data on the disk device by the linear mapping
of sectors. This means the blocks are located by
an integer index, with the first block being LBA
0, the second LBA 1, and so on. The read/write
commands, whether the data transfer protocol is
either PIO or DMA, use 28 bits for addressing
one sector. Hence the maximum size supported
by the 28-bit addressing is 228 × 512 bytes =
128 GB, since the size of one logical sector is
512 bytes. In order to support LBA 28-bit
addressing, the ATA standard uses the LBA group
registers and the first 4 bits in the Device register
with the following mapping: LBA Low=LBA(7:0),
LBA Mid=LBA(15:8), LBA High=LBA(23:16),
Device(3:0)=LBA(27:24).

Implementation
This section begins with the initialization phase
of the ATA emulator and continues by presenting
some software protocols like reset, PIO in/out,
DMA, and how the master/slave device address-
ing is handled in the implementation. At the end
we present the ATA commands that have been
implemented till now.

Initialization
The initialization of the ATA adapter begins in
the pci_ata_init function by opening the backing
file as disk storage. The PIO and DMA commands
that will be handled by the emulator will result in
read and write calls to the backing image file
descriptor. Each IDE controller appears as a
device on the PCI bus. If the class code is 0x01
(Mass Storage Controller) and the subclass code
is 0x1 (IDE), this device is an IDE Device. The PCI
Adapter implements a subset of the PCI standard
type configuration header register set. First, the
PCIR_DEVICE and PCIR_VENDOR registers are set
with 0x8211 and 0x1283 values—a Waldo ATA
Controller. The PCI Class code must be config-
ured by setting the Base-class, Sub-class Codes
with the next values: 01h – Mass Storage and
01h – IDE. The Programming Interface Code
should be correctly handled by setting the
PCIP_STORAGE_IDE_MASTERDEV bit to indicate
that the adapter can do bus master operation,
and either the PCIP_STORAGE_IDE_MODEPRIM
or PCIP_STORAGE_IDE_MODESEC bit to select
the ATA channel. In the initialization function of

the ATA Host emulator, the BAR registers must
be allocated. The IDE device only uses five BARs
of the six. The PCI BAR0 and BAR2 represent the
base addresses of primary and secondary chan-
nels. The PCI BAR1 and BAR3 represent the base
addresses for the control register for primary and
secondary channels. The PCI Base Address
Register BAR4 is the base address of the ATA Bus
Master I/O registers. The initialization is complet-
ed by reserving the proper IRQ numbers for each
ATA channel.

Device Addressing
Considerations
When a value is written to the registers of both
devices, the host discriminates between the two
by using the DEV bit in the device register. Data
is transferred in parallel either to or from host
memory to the device’s buffer under the direc-
tion of commands previously transferred from
the host. The device performs all operations nec-
essary to properly write data to or read data
from the media. When two devices are connect-
ed on the cable, commands are written in paral-
lel to both devices, and for all except the EXE-
CUTE DEVICE DIAGNOSTIC command, only the
selected device executes the command. When
the device control register is written, both
devices respond to the write regardless of which
device is selected. When the DEV bit is cleared to
zero, Device 0 is selected. When the DEV bit is
set to one, Device 1 is selected. When two
devices are connected to the cable, one is set as
Device 0 and the other as Device 1 [6].

Software Reset Protocol
At some point the guest driver is going to software
reset the ATA controller. One point would be when
the guest driver is looking for any signs of
ATA/ATAPI present in the channel. To reset the con-
troller, the driver writes the ATA_A_RESET bit in the
ATA_CONTROL register. For emulation of this oper-
ation, the ATA emulator sets the ATA_E_ILI bit in
the ATA_ERROR register and the ATA_S_READY bit
in the ATA_STATUS register. For more details and a
better understanding please take a look at the
ata generic reset function in the sys/dev/ata/
ata-lowlevel.c FreeBSD driver.

PIO Data-in Command Protocol
The PIO data-in protocol is used to transfer one

or more blocks of data from the disk device to
the host memory. It is closely related to the com-
mands that use this protocol since they are
responsible for preparing the PIO data buffer.
The use of this protocol is transparent for the
ATA driver since it needs to specify only the
parameters for a specific PIO command. Hence
there is a PIO data-in class containing commands
that use this protocol. Such commands are:
IDENTIFY DEVICE, READ MULTIPLE, READ SEC-
TOR(S). After one of these PIO commands is
issued by the ATA guest driver, the emulator
reads the data from the block disk into the PIO
buffer and interrupts the host, which means the
data is ready to transfer. At that moment, the
host starts to transfer data by polling the DATA
register and getting 4 bytes at each read. When
the buffer is empty, the PIO command is com-
pleted. The host gets interrupts for each trans-
ferred block which is 128 sectors by default. If
the total count of sectors is not evenly divisible
by the block count, the emulator interrupts after
the last partial block has been transferred.

PIO Data-out Command
Protocol
The PIO data-out protocol is used to transfer one
or more blocks of data from the host memory to
the disk device. Differing from the PIO data-in
protocol where the data buffer is prepared by
the emulator before the transfer starts, the host
writes the data into the buffer. It is closely relat-
ed to the commands that use this protocol as
they are responsible for transfer parameters like
the sector count and the offset in the block disk.
There is a PIO data-out class containing com-
mands like WRITE MULTIPLE, WRITE SECTOR(S)
that uses this protocol. After one of these com-
mands is issued, the emulator saves the transfer
parameters (sector count and offset) and waits
for the data from the host without asserting the
interrupt. The ATA driver starts to transfer data
by polling from the DATA register into the PIO
buffer adding 4 bytes at each write. When the
total number of sectors has been written on the
block disk, the PIO command is completed. For
every transferred block, the emulator writes the
data on the block disk and interrupts the host. If
the total count of sectors is not evenly divisible
by the block count, the emulator interrupts after
the last partial block has been transferred.

May/June 2016 27

•

28 FreeBSDJournal

DMA Command Protocol
The DMA protocol is used to transfer one or
more blocks of data either from the host mem-
ory to the disk device, or from the disk device
to the host memory. It is closely related to the
commands that use this protocol since they are
responsible for the transfer parameters like the
sector count and the offset in the block disk.
There is a DMA class containing commands like
READ DMA, WRITE DMA that uses this proto-
col. Before further explanation, we want to
introduce the concept of DMA transaction.
Basically the DMA transaction contains three
parts: the READ/WRITE DMA command, the
start, and eventually the stop of the DMA pro-
cedure. After one of these commands is issued,
the host driver starts the DMA transaction by
giving the address of the Physical Region
Descriptor Table to the emulator and setting the
Start/Stop Bus Master bit in the ATA Bus Master
Command Register.

The emulator gets the physical address in the
guest memory space and needs to translate it
into the bhyve process memory space. To
achieve this, the emulator uses the
paddr_guest2host function which uses the
guest address as a parameter and returns a
pointer to the host memory space. The PRD
Table contains several Physical Region
Descriptors (PRDs) which describe areas of the
guest memory that are involved in the data
transfer. Each PRD entry has 8 bytes and speci-
fies the location where the data will be trans-
ferred to/from. The first 4 bytes represent the
address of a physical guest memory region; the
next 2 bytes specify the number of bytes that
are supposed to be transferred to/from that
region. The physical address of the entry is
translated into the bhyve address space in the
same way as the PRDT address using the
paddr_guest2host. If bit 7 of the last byte is set,
that is the end of the table. At this moment the
emulator iterates through the entries to prepare
the block request that will be executed by the
block instance. Basically a block request con-
tains an array of iovec structures with each
iovec structure indicating an entry in the PRD
Table. After the block request has been pre-
pared, it is executed in the context of the block
instance, meaning a write or read operation on
the file descriptor associated with the block.
The guest driver is notified when the transfer is

complete by asserting an interrupt as it has to
initiate the last phase of the transaction by
clearing the Start/Stop Bus Master bit in the
ATA Bus Master Command Register. At that
moment, the emulator verifies the state of the
transaction and sets the status register indicat-
ing whether the transfer has completed success-
fully or not and eventually marks the transac-
tion as completed.

Command Descriptions
In FreeBSD, ATA commands are implemented in
the sys/dev/ata/ata-lowlevel.c driver. This
driver is directly controlling our ATA controller
emulator. For a better understanding of the
command structure, we took a look at some
functions that are related to ATA commands in
the guest driver: ata_generic_command,
ata_tf_write, ata_wait.

An ATA command starts by selecting the
master/slave drive, waiting for the controller to
clear the ATA_S_BUSY register. When it is ready
to issue the command, the driver enables the
interrupt by setting ATA_A_4BIT bit in the
ATA_CONTROL register and continues with
some write register operations such ATA_FEA-
TURE, ATA_COUNT, ATA_SECTOR,
ATA_CYL_LSB, ATA _CYL_MSB, ATA_DRIVE to
configure the parameters of the command.
Actually the ATA command is issued to the con-
troller by writing code into the ATA COMMAND
register. The emulator saves these parameters
into its internal data structures and uses it to
find the meaning of the command. After the
command is fully emulated, an interrupt should
be asserted to notify the guest driver.

The commands implemented in the ATA emu-
lator meet the general feature set commands sup-
ported by the ATA 6 standard. We describe some
of the implemented ATA commands below.
• IDENTIFY DEVICE: This command enables
the host to receive parameter information from
the device. The device sets the BSY bit to 1,
prepares to transfer the 256 words of device
identification data to the host, sets the DRQ
and READY bits to 1, clears the BSY bit to zero,
and asserts INTRQ. The host may then transfer
the data by reading the data register using the
PIO data-in protocol. The data is transferred
using 128 successive word transfers. The order
of bytes inside the word is different between
the driver and emulator memories. For example,

to send the FaK3 MoDeL IDA diSk
string to the host memory, the emu-
lator prepares the aF3KM DoLeI ADd
Si k string. Using this command, the
host finds out the CHS parameters of
the disk device like the number of
cylinders, heads, and sectors, the
model name, serial number, and
firmware version, and also the capa-
bilities supported. The capabilities
supported by the ATA emulator are:
both Multi Word DMA2 and the
PIO4 data transfer protocol working
with 28-bit LBA addressing, support
for write-read verify, and flushcache.
• READ MULTIPLE: This command is
issued by the ATA driver to read data
using the PIO data-in protocol. It spec-
ifies the number of sectors to be trans-
ferred and the offset on the block disk using the
LBA 28-bit addressing mode. The emulator reads
data from the disk, prepares the PIO buffer, marks
the PIO read command in progress and interrupts
the host meaning the data is ready. After the host
gets the interrupt, it starts to transfer the data.
• WRITE MULTIPLE: This command is issued by
the ATA driver to write data using the PIO data-
out protocol. It specifies the number of sectors to
be transferred and the offset on the block disk
using the LBA 28-bit addressing mode. The emu-
lator saves the command parameters into the PIO
setup, marks the PIO write command in progress,
and waits for the host to transfer the data.
• READ AND WRITE DMA: These commands
are issued by the ATA driver to read / write using
the DMA data protocol and they indicate the first
phase of the DMA protocol. The protocol speci-
fies the number of sectors to be transferred and
the offset on the block disk using the LBA 28-bit
addressing mode. The emulator saves the com-
mand parameters into the DMA setup including
the direction of the operation (read / write), and
marks the DMA transaction as started.
Afterwards the host prepares the PRD Table and
activates the DMA transaction.
• FLUSH CACHE: This command is a non-data
ATA command used by the host to ask
the device to flush the write cache.
Basically the emulator creates a flush
request to the block device which flush-
es the file descriptor associated with
the disk drive.

Scenarios and Results
Using -s 3:0,ata-hd,0,./diskdev_ata,./diskdev_ata_slave
input for the bhyve application, the next output
is printed by the guest ATA legacy driver (see
Listing 1).

We observe that the ATA controller is success-
fully recognized by the atapci driver and the BAR
addresses are properly allocated (BAR1 =
0x2020-0x2027, BAR2 = 0x2028-0x202b, BAR3
= 0x170-0x177, BAR4 = 0x376, BAR5 =
0x2040-0x204f). Also both ATA channels are
handled by the ata0 and ata1 drivers. Because
both disk drives have been specified in the input
string, indicating the first one as master drive
and the second one as slave drive, there are two
instances of the ada driver—ada0 and ada1.
Hence, at the Partitioning phase of the FreeBSD
Installer there are two disks on which to install
the FreeBSD virtual machine with both of them
being supported (see Listing 2). The model imple-
mented by the ATA emulator is an ATA-6 device
which supports both PIO and WDMA2 data
transfer protocols. It should be emphasized that
the speed of 16.700MB/s is not the actual speed
of the data transfer between the guest operating
system and emulator, but it represents the speed
required by the WDMA2 standard.

atapci0: (ITE IT8211F UDMA133 controller)
port 0x2020-0x2027,0x2028-0x202b,0x170-0x177,
0x376,0x2040-0x204f at device 3.0 on pci0
ata0: <ATA channel> at channel 0 on atapci0
ata1: <ATA channel> at channel 1 on atapci0
ada0 at ata0 bus 0 scbus0 target 0 lun 0
ada0: <BHYVE ATA IDE DISK 1.0> ATA-6 device
ada0: Serial Number 123456
ada0: 16.700MB/s transfers (WDMA2, PIO 65536bytes)
ada0: 8192MB
ada0: (16777216 512 byte sectors: 16H 63S/T 16644C)
ada0: Previously was known as ad0
ada1: at ata0 bus 0 scbus0 target 1 lun 0
ada1: <BHYVE ATA IDE DISK 1.0> ATA-6 device
ada1: Serial Number 123456
ada1: 16.700MB/s transfers (WDMA2, PIO 65536bytes)
ada1: 8192MB
ada1: (16777216 512 byte sectors: 16H 63S/T 16644C)
ada1: Previously was known as ad1

LISTING 1. ATA LEGACY DRIVER’S LOG

Select the disk on which to install FreeBSD.
vtbd0 654 MB Disk
ada0 8.0 GB ATA Hard Disk (BHYVE ATA IDE DISK)
ada18.0 GB ATA Hard Disk (BHYVE ATA IDE DISK)

LISTING 2. FreeBSD INSTALLER—PARTITIONING

30 FreeBSDJournal

At the moment, the guest FreeBSD virtual
machine can be installed on either ada0 or ada1
and played without any restrictions using the
ATA emulator. The only limitation is the size of
the disk, which is maximum 128 GB due to LBA
28-bit addressing.

Even though the full installation of the virtual
machine on the ATA disk proves the correctness
of the ATA emulator, a set of tests for a proper
validation have been performed. Using a similar
approach to Listing 3, the BLOCK_SIZE and
MAX_SECTORS variables have been varied to
cover the whole disk with different chunk sizes.
All the tests were passed proving the correct-
ness of the implementation.

As we said before, the maximum transfer rate

specified by the ATA-6 standard using
the DMA Multi-word 2 is 16.7MB/s.
However, this value seems smaller than
the actual speed of our emulator since
it is for hardware devices. In order to
get the transfer rates of the ATA emu-
lator, we use the diskinfo tool running
inside the virtual machine which has
the device emulated. Using the ‘diskin-
fo -t /dev/ada1’ command, where

/dev/ada1 is the ATA disk emulated by our imple-
mentation, we get the following results seen in
Listing 4, indicating transfer rates of more than
100MB/s, which is more than enough. The ATA-6
has progressed with Ultra DMA giving data trans-
fer rates up to 100MB/s, which is comparable
with our emulator using WDMA2. Hence our
implementation is compliant with ATA-6 require-
ments without a need to develop the Ultra DMA
feature.

Even though the ACHI and ATA disk drive
controllers are completely different from each
other and do not use the same transfer data
protocols, it would be interesting to measure
the performance of the AHCI module and com-
pare it with our ATA emulator. When we do the

dd bs=$BLOCK_SIZE count=1
if=/dev/random of=tests/testX
dd bs=$BLOCK_SIZE count=1
if=tests/testX of=/dev/ada1 oseek=$MAX_SECTORS
reboot
dd bs=$BLOCK_SIZE count=1
if=/dev/ada1 of=out/testX iseek=$MAX_SECTORS
diff out/testX tests/testX

LISTING 3. ATA TESTING

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Are you a fan of FreeBSD? Help us give back to the Project and donate today!
freebsdfoundation.org/donate/

TM

hT

k na

!uoy

! mudiirI

h
f ose uaceB
nitnocr ieht
gdelwonkac

Bseere FhT

hT

ibl
onitanods uoreneg
e hf tot roppused un
mocg inwollofe he tg

won oitadnuoFD S

k na

hin
s ah cuss on

. tcejorPe
r ofs einapm

o te klid lu

!uoy

!
dolG

wroft cejorP
rae wse eht

.draw
e unitnoco te blae r

TM

e hg tinvmo

revlSi

atidnuodfsbeerf

Fn of afu a yoe rA

/etando/gro.noati

k acbe vigs up leH? DSBeerF

 te tanodd nat cejorPe hto t

 !
d

yadot
sbeerft as rotsenvi
htt uok ceche saelP

orsnod/gor.onitadnuofd

y tinummocs uorenegf ot sill lufe

References
[1] J. Boyd. Serial ata advanced host controller interface, page 9. Intel Corporation, Hillsboro, Oregon. (2008)

[2] T. Goodfellow. Ata/atapi host adapters standard, page 15. Pacific Digital Corporation, Irvine, California. (2003)

[3] T. Goodfellow. Ata/atapi host adapters standard, page 11. Pacific Digital Corporation, Irvine, California. (2003)

[4] P. T. McLean. Information technology–at attachment with packet interface–6, page 16. American National
Standards Institute, New York, New York. (2002)

[5] P. T. McLean. Information technology–at attachment with packet interface–6, page 63. American National
Standards Institute, New York, New York. (2002)

[6] P. T. McLean. Information technology–at attachment with packet interface–6, pages 56–57. American National
Standards Institute, New York, New York. (2002)

[7] Wikipedia. Parallel ata–wikipedia. http://en.wikipedia.org/wiki/Parallel ATA, 2015. (Online; accessed February 14, 2015)

[8] Wikipedia. Serial ata–wikipedia. http://en.wikipedia.org/wiki/Serial ATA, 2015. (Online; accessed February 14, 2015)

ALEX TEACA
graduated
from the
University
Politehnica of
Bucharest and
is currently a
second-year
master’s degree student focused
on parallel and distributed com-
puter systems. His departmental
research project involved work on
the ATA/ATAPI emulation in bhyve
with Mihai Carabas.

MIHAI CARABAS is a PhD stu-
dent at the University Politehnica
of Bucharest studying virtualiza-
tion. He has contributed to the
FreeBSD Project and Dragon-
FlyBSD virtualization code.

PETER GREHAN is a FreeBSD
committer who has been using
BSD-derived operating systems in
some form since the days of DEC
Ultrix. He co-developed and main-
tains the bhyve hypervisor with
Neel Natu.

ALEX TEACA

MIHAI CARABAS

PETER GREHAN

May/June 2016 31

same procedure using the diskinfo tool
on a partition controlled by the AHCI
driver, we get the following transfer rates
displayed in Listing 5.

These results are expected since the
AHCI standard uses the UDMA6 data
transfer protocol which imposes transfer
rates of 300MB/s for hardware devices
with more than the 16.7MB/s transfers
specified by the WDMA2 data protocol.
But the main reason why the AHCI emula-
tion has a better transfer rate is that it uses
the LBA 48-bit addressing mode, which makes it
possible to transfer more data sectors (65536)
per DMA transaction with less overhead in the
communication between the host driver and the
disk emulator.

Conclusion and
Further Work
In this article we presented a model of emulation
for an ATA disk drive controller under the PCI
attachment. We managed to integrate it with
bhyve and implement the general feature set
commands supported by the ATA-6 standard. The
implementation was tested for validation and the
performance was measured and compared
against the AHCI emulation. There is another
option as the ATA emulator could be a child of
the PCI-ISA bus. The utility of ATA would be
hugely improved in legacy operating systems
given that the boot loaders would be able to use
it since the IO ports and IRQs would be at fixed
locations. Future work aims to achieve ATA emu-
lation as a PCI-ISA attachment and merging it to
the final code base. •

outside: 102400 kbytes in 0.719681 s = 142285 kB/s
middle: 102400 kbytes in 0.796385 s = 128581 kB/s
inside: 102400 kbytes in 0.781721 s = 130993 kB/s

LISTING 4. TRANSFER RATES

outside: 102400 kbytes in 0.326701 s = 313436 kB/s
middle: 102400 kbytes in 0.339824 s = 301332 kB/s
inside: 102400 kbytes in 0.348496 s = 293834 kB/s

LISTING 5. AHCI TRANSFER RATES

