
24 FreeBSD Journal

S E E
T E X T
O N L Y

FreeBSDand RTEMS, UNIX in

A REAL-TIME
OPERATING SYSTEM

RTEMS developers have a long
history of using FreeBSD code
in the RTEMS source base and

the results have been very good.
RTEMS is not alone in doing this,
and the challenges and issues RTEMS
faces using FreeBSD source code are
the same that others face.
RTEMS is a POSIX real-time operat-

ing system, or RTOS, and like all
open-source projects has limited
resources. All available effort
needs to be focused on the real-time
parts of the operating system. RTEMS
looks to use quality, suitably
licensed source code where possible—
a combination of code from Newlib,
RTEMS, and the FreeBSD TCP/IP stack—
to provide a surprisingly robust
subset of POSIX.
What follows is a summary of the

history, what has been accomplished
over the last 20 years, and how inte-
gration problems were solved while
minimizing the maintenance burden.

RTEMS
RTEMS stands for Real-Time Executive for
Multiprocessor Systems and has been open-source
software since 1991. RTEMS has been used in
some significant applications over the last 25 years
and the project has a healthy community. It was
developed by On-Line Applications Research (OAR)
in Huntsville, Alabama, under contract from the
U.S. Army in response to program managers
watching missiles head down a test range and

explode—each bundled with an operating system
license.

RTEMS started life as a traditional embedded
RTOS kernel typically found in the late 1980s and
early 1990s. The user API was based around the
VMEBus Industry Trade Association (VITA) Real-
Time Executive Interface Definition (RTEID) 2.1
standard. The kernel’s C source code was cross-
compiled to a library, and a single standalone stat-
ic executable was created by linking the applica-
tion’s object files with the RTEMS library.
Embedding usually involved burning the binary
image into an EPROM using some type of external
programming tool.

An application and the kernel shared the same
address space, and there was no memory man-
agement or virtual memory. An RTEMS application
was statically linked with the OS and operated in
the same single address space. The single-address-
space environment was like a single process with
no protection and a 1:1 mapping for the virtual
addresses to the physical address space. The first
versions of RTEMS had no C Library or filesystem,
no networking, and device drivers and hardware
support were often custom for the specific hard-
ware and considered part of the application.

RTEMS has supported multiple processors for
20 years. The multiprocessor support is based
around separate address spaces running on sepa-
rate processors interconnected using a bus archi-
tecture and message passing. Applications can
access and manage resources distributed across a
number of nodes.

RTEMS has evolved and grown and is now
much more sophisticated. However, some of these
fundamental aspects of embedded, real-time sys-
tems remain and are valid.

By Chris Johns, Joel Sherrill, Ben Gras, Sebastian Huber, Gedare Bloom

July/August 2016 25

Today RTEMS has symmetric multiprocessing
(SMP) support. In some respects, the easy part is
implementing SMP support in the OS because
designing deterministic, real-time SMP applica-
tions is even more challenging. The problems in
the OS are solved once, but each application
faces similar challenges related to race-condition
bugs, resource contention, and effective utiliza-
tion of multiple cores while having predictable,
correct, and safe behavior.

Real-time
Today, real-time software and real-time operating
systems are as important as ever. The develop-
ment of applications for them is alive and well,
and so is the development of the operating sys-
tems to support these applications. The increase in
computing power in smaller and smaller devices
has brought powerful, server-grade operating sys-
tems such as FreeBSD to small, embedded devices,
and these devices can have the performance to
meet a range of real-time applications. However,
these systems are still not fully deterministic, and
the ability to complete a full schedulability analysis
is problematic. RTEMS’s performance can be
deterministic, and it provides a rich suite of sched-
uling algorithms to meet the demands of real-time
applications.

RTEMS has extended its support for high-per-
formance, real-time computing by adding SMP
for multi-core processors. Real-time software on
SMP hardware is a difficult and complex chal-
lenge. To aid the application architects, RTEMS
provides a powerful set of configuration inter-
faces. Cores can be grouped and assigned a spe-
cific scheduling algorithm, and threads can be
assigned to a core affinity set and therefore asso-
ciated with a specific scheduling algorithm. The
ability to partition the components of a real-time
design lets the architects manage the difficult
task of schedulability analysis. RTEMS lets inter-
rupts be assigned to specific cores letting the
user manage latency when under load.

Kernel Architecture
and APIs

The RTEMS Kernel source can be found in the
git://git.rtems.org/rtems.git repository. It has four
major components:

1. SuperCore
2. Application Programming Interfaces
3. Services
4. Board Support Packages (BPS)

SuperCore
The SuperCore is a super set of functionality
exported to users via the various application pro-
gramming interfaces or APIs. The SuperCore con-
tains all the important, real-time algorithms in
RTEMS. It contains the scheduling, locking, syn-
chronization, clock, interrupt and SMP support. It
also contains the architecture and CPU support for
context switching and low-level interrupt manage-
ment for each of the supported architectures.

The resources created and managed by the
various user interfaces can coexist because every-
thing maps to a SuperCore resource. This means
a thread created in one user interface can block
on a mutex created by a different user interface.
This is a powerful feature, as software compo-
nents can be implemented by different user inter-
faces and can be combined into a single exe-
cutable. The support extends to the scheduling
and time domain. This means the run-time pro-
file of an application is independent of the API
used to write it.

Application Programming Interfaces
RTEMS currently supports three major application
programming interfaces or APIs. They are:

1. RTEMS Classic API
2. POSIX
3. High Performance API

RTEMS Classic API
The Classic API is the original API in RTEMS and
is based on the VITA RTEID 2.1 standard. It is a
classic, real-time operating system programming
interface and provides:

1. Tasks
2. Semaphores
3. Message Queues
4. Events
5. Barriers
6. Interrupts
7. Time
8. Timers
9. Rate Monotonic Periods
10. Fixed Allocation Memory Pools
11. Variable Allocation Memory Pools

The RTEMS Classic API has a low overhead
and is often used in small resource-limited targets
needing a small footprint.

26 FreeBSD Journal

POSIX
RTEMS POSIX support is divided into three parts
based upon where they are implemented. They
may be implemented by the:

1. C Library,
2. RTEMS, or
3. TCP/IP stack.

RTEMS uses the same Newlib C library as
Cygwin to provide the core C Library and most of
the non-thread related POSIX capabilities. This
provides a robust implementation of core POSIX
and C Library services including math, stdio, and
strings, and even wide character support. Much
of the Newlib source code originated from BSD
operating systems, but has been ported to many
target architectures.

Importantly, RTEMS relies upon Newlib header
files defined by the C and POSIX standards.
Historically, Newlib did not provide a complete set
of C and POSIX header files. It only provided
those where it implemented some methods.
However, there has recently been a push by the
RTEMS developers to grow this set and to ensure
they are compatible with FreeBSD-kernel and
user-space source code.

RTEMS provides the implementation of all con-
currency and synchronization capabilities includ-
ing threads, mutexes, condition variables, sema-
phores, and message queues. It also implements
system calls such as open(2), read(2), etc. In
addition, RTEMS provides other POSIX capabilities
such as termios, clocks, and timers.

RTEMS relies upon the FreeBSD TCP/IP stack to
provide the networking APIs required by the
POSIX standard. The older IPV4-only stack does
not provide all of the capabilities required by
POSIX. However, the new TCP/IP stack provided
by the LibBSD project deserves credit for provid-
ing complete support.

As a single-process, multithreaded operating
system, RTEMS is aligned with POSIX profiles PSE
51 and 52. These profiles define the services pro-
vided by single-process, multithreaded POSIX
implementations. PSE 52 includes filesystem sup-
port, while PSE 51 does not. RTEMS applications
may optionally disable all filesystem support.
Thus, RTEMS can be user configured to align with
either profile. FreeBSD is a multiprocess, multi-
user POSIX implementation and aligned with
POSIX profile PSE 54.

The Open Group Future Airborne Capability
Environment (FACE™) Consortium has defined
four new POSIX profiles to address the require-
ments of the avionics software community. These

profiles reflect existing real-time operating sys-
tems and applications that have achieved certifi-
cations in industries such as avionics and medical
devices. These profiles reduce the approximately
1,300 methods in the POSIX standard to meet
the certification and application requirements
found in existing avionics applications:
• The Security Profile is small with only 163 meth-
ods required. It is designed for multithreaded, sin-
gle-process applications such as an information
gateway device.
• The Safety Base Profile is larger with 246 meth-
ods required. It is designed for multithreaded, sin-
gle-process applications.
• The Safety Extended Profile is larger with 335
methods required. It is designed for multithread-
ed, multiprocess applications.
• The General Purpose Profile is larger with 812
methods required. It is designed for multithread-
ed, multiprocess applications which may not have
any certification requirements or less rigorous
ones.

Being a single-process, multithreaded operat-
ing system with a long history of standards sup-
port, RTEMS naturally aligns with the Safety Base
Profile. When initially evaluated, RTEMS was miss-
ing less than 10 methods from this profile. There
is currently an effort to integrate RTEMS and the
ARINC 653 Deos RTOS and achieve FACE confor-
mance for the Safety Base Profile.

Interestingly, when evaluated against the single-
process FACE General Purpose profile, RTEMS does
surprisingly well, supporting approximately 90% of
the methods required. Proper support for required
capabilities such as fork(2)/exec(3) and process
groups are beyond the target profile for RTEMS.
However, most of those missing methods are meth-
ods that do not require multiprocessing. Newlib does
not support fenv.h or long, double-complex math.
These account for most of the missing methods that
RTEMS could support.

High-Performance API
The close coupled High-Performance API is new
and not considered a general API for use in appli-
cations. It is used in places where speed and
compatibility can be traded off. The FreeBSD port
is an example as well as back ends for
C11/C++11 threads and OpenMP. C11/C++11
threads currently have the lowest space and time
overhead in RTEMS.

Services
Services provide functionality to help developers
create useful applications. The support can range
from implementation of specific protocols such as

July/August 2016 27

SNMP, additional languages such as Lua or
Python, or important services like NTP.

Board Support Packages
A Board Support Package or BSP implementation
is the code and support needed to implement
RTEMS on a specific piece of hardware. RTEMS
contains over 170 BSPs on 17 architectures. The
BSP manages the entry from the boot loader, set-
ting up of memory, caches, console, and it con-
tains a timer driver for the system tick. If the
processor has more than one core, then it also
manages the starting of the extra cores.

While most FreeBSD users will never need to
delve into the details of the device drivers for
their hardware, RTEMS users often use custom
hardware and thus are responsible for developing
the drivers for their own boards.

FreeBSD in RTEMS
FreeBSD is an important part of RTEMS and its
history. BSD code in RTEMS can be traced back to
code and files being added to the Newlib C
library. Since then RTEMS has taken FreeBSD
directly into its source base in a number of areas.
As well as the C Library, RTEMS shell commands
such as rm, cp, and even dd are among the
growing number of consumers of this code.

Networking Stack
In the late 1990s, Eric Norum, working at the
Canadian Light Source in Saskatoon, started to
look for a networking stack for RTEMS. Eric is a
member of the EPICS project, which requires a
networking stack. His first efforts included port-
ing a stack called KA9Q, which was not that suc-
cessful from both a performance and licensing
viewpoint. At that point in RTEMS’s history, appli-
cations were always statically linked with the OS.
Also, embedded real-time applications are
shipped integrated with hardware devices. There
is generally no desire to redistribute any source
code for the application or any supporting soft-
ware. These deployment characteristics have
always led the RTEMS Project to carefully evalu-
ate the license for software incorporated directly
or provided as third-party add-ons. For KA9Q, in
addition to performance issues, there was never
clarity on precisely what the license of the KA9Q
stack actually was. This resulted in the KA9Q
effort being abandoned.

Eric Norum started to look at porting the Linux
network stack. However, that effort did not last
because of the license, so it was suggested he
look at the FreeBSD stack. Over the course of six
months Eric ported the FreeBSD networking stack

to RTEMS. This stack is still present in RTEMS and
is essentially unchanged with specific bug fixes
made as required. This network stack has been
very successful and has given RTEMS all the net-
working sophistication available from a standard
FreeBSD installation.

FreeBSD’s stack is fully featured, and when
ported to an RTOS users can create applications
which have a system-level robustness. There are
very few system configurations that cannot be
done in RTEMS—from a single flat network end-
point to routing, DHCP, radio VoIP, and IP over
GRE tunnels over SDH management channels.

This initial port, or what is now called the
legacy port, of the FreeBSD networking code
used a three tasks model. A networking task or
thread runs within the networking stack and lets
the stack handle things like ICMP packets and
TCP retransmission. Each interface has a receive
and transmit task. The receive task receives data
from the MAC delivering it to the stack and the
transmit task empties the output queue sending
the mbufs to the MAC. All networking tasks
have the same priority and need to hold a single
networking semaphore when running. This
design means there is limited networking concur-
rency, and throughput with more than one inter-
face is limited, as the semaphore serializes all
processing. However, the implementation is safe
and reliable in a re-entrant threaded system and
in practice it works very well.

Maintenance
In the years following the completion of this port,
some issues began to be observed. The first and
most obvious was the availability of drivers. The
custom driver support required custom drivers to
be written for RTEMS. Code could be borrowed
from FreeBSD; however, drivers often needed to
be written and tested as if new. As time moved
on and FreeBSD evolved, it was frustrating and
confusing to RTEMS users that a port of the
FreeBSD stack did not support drivers from newer
FreeBSD versions.

When the code was ported to RTEMS, it was
copied into a simplified directory structure. The
FreeBSD directory tree is large and wide and
there seemed no point in creating a wide, sparse
tree to host a small collection of files. This made
it difficult to easily compare files with the
FreeBSD originals because it was never really clear
which files in the RTEMS source should be com-
pared against which files in the FreeBSD source.
Code was changed to get it to build and this was
done without any clear indication of what was
original and what was changed. As time went on
and FreeBSD improved its stack, for example,

28 FreeBSD Journal

adding IPv6, it was practically impossible to move
from the snapshot in the RTEMS source tree.
Specific bug fixes were brought in by hand for
localized fixes, but this was a time-consuming
process and narrowly focused. This resulted in a
maintenance problem that grew increasingly
worse as the code aged.

Till Straumann, working at Stanford’s SLAC
National Accelerator Laboratory, built an addition-
al library called libbsdports that allowed driv-
ers from FreeBSD to be used with minimal
changes. This was remarkably successful and it
raised the idea of being able to use FreeBSD code
with minimal changes. His work was limited to
networking drivers and on a specific range of
architectures, but was the first public example of
this being achievable.

There were other FreeBSD activities happening
around this time. Chris Johns took the USB stack
and ran it on RTEMS on a NIOS-II. However, these
were isolated, specific, and of no long-term value
to the RTEMS Project. It also highlighted the issue
of having separate ports of specific pieces of the
FreeBSD kernel. How are the separate pieces
brought together in a single static executable?
RTEMS needed a single, unified port of the
FreeBSD kernel code for all the different parts of
interest. Consequently, a plan was developed to
address the use of FreeBSD source in RTEMS. The
first decision was to take a step back and not
fragment the effort. The various parts of the
FreeBSD code base that would be used by RTEMS
needed to be together and maintained as a single
entity. This project was named RTEMS LibBSD.

RTEMS LibBSD
The most recent FreeBSD porting project in
RTEMS is called RTEMS LibBSD or simply LibBSD.
The project is hosted in a separate Git repository
within the RTEMS Project’s Git server. The reposi-
tory is at https://git.rtems.org/rtems-libbsd.git. It
is a combined effort led by Joel Sherrill and
Sebastian Huber.

The project creates a single port of FreeBSD for
RTEMS and provides a range of features present
in FreeBSD useful to RTEMS such as networking,
USB, SATA, and MMC devices.

As the effort progressed, a broad set of rules
was developed to guide developers working on
RTEMS LibBSD. The rules slowly took shape as
the team found what worked and what did not
work. The rules can be summarized as:

1. The directory structure of the RTEMS LibBSD
code must match the source tree in FreeBSD.
2. All changes in the RTEMS version of the code

must be bounded by a standard conditional
defined syntax. This allows removal of the RTEMS
changes and comparison of the source with the
original FreeBSD code using Python scripts.
3. Do not edit the FreeBSD code including any
white-space changes. Make all edits in preproces-
sor conditionals.

The ability to use original FreeBSD source
transparently is central to the work done in
LibBSD and the term “source transparency” has
been adopted to describe the approach. Anyone
embedding FreeBSD code with their own system
and machine headers wants to be able to take a
subset of the FreeBSD source files and build them
without any changes. Currently this is not possi-
ble. When viewing the FreeBSD source code from
the RTEMS Project’s point of view, any transpar-
ent source has no changes, and as changes are
made, the original FreeBSD becomes less visible.

The major items to resolve when embedding
FreeBSD kernel code are:

1. Header files and required declarations. The sys-
tem and machine header files for an RTEMS tar-
get do not match the header files used by the
FreeBSD kernel code. The improved standardiza-
tion of headers has helped on both sides, but
there is a range of kernel types and defines that
need to be added.
2. The use of standards-based, userland function
names with differing signatures in the kernel, for
example, malloc. RTEMS is a single address space,
statically-linked executable, and these name
clashes need to be managed and often are—with
horrible hacks.
3. Supporting the SYSINIT initialization used in
FreeBSD. This requires linker support to get the
correct section management in place. The way this
is done in FreeBSD is so good that something simi-
lar was adopted in the RTEMS kernel and with
impressive results. RTEMS has adopted the linker
mechanism to initialization used by FreeBSD with
SYSINIT. Previously RTEMS required users to man-
age in their build system the parts of RTEMS they
needed linked in, and for those parts they did not
want, they needed to link dummy versions. With
the linker set initialization this is all automatic,
including the order in which the initialization hap-
pens, making RTEMS simpler to use. Although
there had always been a focus on small executable
size, the size of the RTEMS minimum reference
application decreased in size thanks to the change
to SYSINIT style initialization.
4. SMP support requires that some parts of the
FreeBSD port be managed in the context of
RTEMS SMP support.

CONTINUES NEXT PAGE

July/August 2016 29

5. FreeBSD userland code in a single, statically-
linked executable requires some interesting hacks
to avoid global symbol clashes and to make ini-
tialized variables work. This is especially obvious
when porting shell commands into a single
address space. Each command has its own
main(), and calling exit() does not exit the
command invocation—it exits the entire RTEMS
application.

Source Code Management
The source tree consists of four major directories.
They are:

1. freebsd – RTEMS’s FreeBSD source code
2. rtemsbsd – RTEMS’s FreeBSD support

source code
3. testsuite – Tests for RTEMS LibBSD
4. rtems_waf – RTEMS’s waf support for

building against RTEMS BSPs.

When using LibBSD, the Git sub-module for
rtems_waf must be initialized to bring its sup-
port files into the cloned repository. The module
helps configure and build LibBSD for a BSP. A
RTEMS toolchain and suitable board support
package (BSP) also needs to have been built and
installed.

Developers working on LibBSD will also need
to clone the FreeBSD source tree from the snap-
shot point. This creates an extra directory called
“freebsd-org.”

The RTEMS LibBSD project has around 850
build targets. To manage this number of files and
the complex set of compile time defines, archi-
tecture specific files, and header files, the defini-
tions are isolated into a single file that is inde-
pendent of the build system. The initial develop-
ment generated a makefile and recently this
was changed to generate a waf script
(https://www.waf.io). The waf build script inte-
grates with the “rtems_waf” support, which
makes it easier to extract and use the various
machine specific compile flags a BSP has. As
RTEMS has a single address space, it is critical
that the operating system, user code, and any
libraries like LibBSD be built using the same ABI.

The LibBSD build definition is a single Python
file called libbsp.py. The file contains a number
of module definitions and these modules are
passed to the source management tool to manage
moving source in and out of the original FreeBSD
source tree to the RTEMS FreeBSD source tree. The
module data is also passed to the build script gen-
erator to create the waf build script.

There is support for a number of different
types of modules. Modules can be for RTEMS

headers and source, FreeBSD kernel space head-
ers and source, or FreeBSD user space header
and source. The module definitions can be given
specific compiler flags, or they can be specialized
for a specific architecture. A lot of the source is
generic to all architectures; however, some files
are specific to some architectures, for example,
an architecture-specific IP checksum routine.

To add new source files to LibBSD, first initial-
ize the FreeBSD Git sub-module, which populates
the freebsd-org source tree with the specific ver-
sion LibBSD is currently based upon. Run the
“freebsd-to-rtems.py” script in reverse to move
the modified source in RTEMS FreeBSD to the
original FreeBSD source tree. Edit the source defi-
nition to add the new files and run the same
script in the forward direction. The source will be
copied across to the LibBSD tree and the build
script will be updated. LibBSD can now be built
and the source edited so it can run.

The user space symbol clashes are managed
by maintaining a header file that redefines the
symbols to a different name space. This is not
ideal, but it can be made to work. The clashing
symbols, however, raises a common issue, the
need to include some header files before any
FreeBSD code appears. Having to change the
standard code to include headers accounts for a
reasonable percentage of the changes made to
the original source code. An empty header in a
normal FreeBSD kernel tree would help this type
of porting exercise because it could include an
RTEMS-specific version that includes the symbol
refines. It is a simple change in the kernel that
makes a larger difference to the RTEMS project.

FreeBSD Core APIs
and RTEMS Mappings

The FreeBSD kernel support is implemented in
terms of RTEMS services. The following describes
those mappings:

1. Shared/exclusive locks SX(9) map to binary
semaphores. This neglects the ability to allow
shared access.
2. Mutual exclusion MUTEX(9) maps to binary
semaphores. Non-recursive mutexes are not sup-
ported this way.
3. Reader/writer locks RWLOCK(9) map to bina-
ry semaphores. This neglects the ability to allow
multiple reader access.
4. The sleep queues SLEEPQUEUE(9) use the
FreeBSD implementation with adjustments for
RTEMS.
5. Condition variables CONDVAR(9) use the
FreeBSD implementation (no signals support).

•

CONTINUES NEXT PAGE

30 FreeBSDJournal

6. Timer functions CALLOUT(9) mainly use the
FreeBSD implementation. The wheel driver is a
RTEMS’s timer server routine.
7. Tasks KTHREAD(9), KPROC(9) map to
RTEMS tasks.
8. Device management DEVCLASS(9),
DEVICE(9), DRIVER(9), MAKE_DEV(9)
uses the FreeBSD implementation.
9. Bus and DMA access BUS_SPACE(9),
BUS_DMA(9) maps to Board Support Package
implementations. A default implementation for
memory-mapped, linear access is provided and
the current RTEMS heap implementation sup-
ports all the properties demanded by bus_dma.
10. The Universal Memory Allocator UMA(9) is
supported using a simple page allocator as back-
end allocator.

From a maintenance perspective, the RTEMS
developers hope that these FreeBSD kernel APIs
remain stable. This reduces the risk that updates
to FreeBSD require significant work to the RTEMS
implementation of the core kernel APIs.

User Space
An important part of using FreeBSD is the user-
space support. The commands such as sysctl,
ifconfig, and netstat provide an important
user interface. Being able to support these types
of commands not only makes using the FreeBSD
software possible, it allows RTEMS to tap into
the wealth of existing FreeBSD documentation.
This is an important, but often overlooked,
source of reuse.

Porting separate user space programs into a
single executable is an involved and delicate
operation. As RTEMS has only a single address
space available, neither fork(2) nor exec(3)
are available to set up a new process context.
Many common assumptions that C code makes
cannot be relied on. RTEMS has to emulate a
subset of both fork(2) and exec(3) seman-
tics. This is accomplished with a combination of
build-time, link-time, and run-time techniques.
LibBSD provides some abstractions in the form of
wrapper functions to help.

When bringing this type of code into RTEMS,
it is critical that there are no globals. A range of
prepossessing tricks can be used and none of
them are nice. Any global data needs to initial-
ized for each run of the command. The use of
getopts needs to be replaced with a nonstan-
dard re-entrant version provided by Newlib.
Finally, main() is replaced with a function name
such as main_dd() for the command. A few
important other functions like exit() or

perror() are also replaced with calls to the
LibBSD command support code.

The generic support for the commands in
LibBSD only allows a single command to run at
once. While this is not ideal, multi-user access to
RTEMS is normally not an issue. The generic sup-
port wraps the call to the specific main() in a
setjmp() call. An exit() call is implemented
by a longjmp() call. Since RTEMS is a single-
process, multithreaded environment, executing
the native exit(3) in an application shuts
down the entire application.

The resulting code is not pretty in places; how-
ever, the results are rather impressive. There is a
working network stack with related FreeBSD
commands including ifconfig, netstat,
ping, and tcpdump, which is an interesting
command to run on a real-time operating sys-
tem. Full Gigabit Ethernet performance has been
sustained for both transmit and receive on ARM,
PowerPC, and x86 systems.

Initialization
As the code in LibBSD becomes more stable and
supports more BSPs, users are beginning to
migrate to it and RTEMS developers are working
on the boot-time initialization. To solve this prob-
lem, the decision was made to adopt the stan-
dard methods used by FreeBSD.

Recently Chris Johns added code to support
rc.conf(5) into the source tree. This is a C
implementation, as RTEMS does not have a
POSIX sh. The benefit of supporting
rc.conf(5) to initialize the code is the large
amount of documentation and solutions avail-
able on the Internet. This is a large saving in
effort for the RTEMS project in terms of docu-
mentation.

Chris Johns also ported sysctl(8) as a
command and is in the process of adding sup-
port to read sysctl.conf(5). As this support
matures, RTEMS-specific code to manage various
memory size configuration options will be
removed. This will both improve portability and
lessen the differences in using and configuring
LibBSD and FreeBSD.

The Future with FreeBSD
How good is LibBSD currently? The answer to
this question depends on the perspective taken.

Any FreeBSD user who needs to use an RTOS
will be pleased by the LibBSD efforts. They have
a full-featured, high-performance, stable net-
working stack with IPv6, packet filtering, virtual
LAN support, and more with world class per-
formance. Users have access to a wide range of

July/August 2016 31

drivers, and device drivers tend to port quickly
with few changes.

The RTEMS developers are far more critical.
The ideal is being able to use the FreeBSD code
with no changes. While this may never happen,
it is critical to ensure that the team strives for it
because it lowers the maintenance burden.
LibBSD is currently stuck on a FreeBSD 9.x version
because updating will require more effort than is
available. This puts LibBSD two major FreeBSD
releases behind (e.g., FreeBSD 10 and 11). This is
due to a combination of issues, some changes in
FreeBSD and some code that is not clearly
tagged.

There are currently 1,295 source files in
LibBSD, and, of those, 797, or 61% of the files,
have no changes. Of the 498 files with changes,
there is an average opacity level of 1.6%. The
level of opacity is a simplistic calculation made by
taking the number of inserts and deletes as a
percentage of the total lines of code including
the inserts and deletes. There are less than 50
files with an opacity level greater than 10%. It is
fair to say this is a reasonably successful result.

What remains to be done? (list follows)

• Upgrade the current code to better track
FreeBSD. It will always be necessary to spend

some effort on this. However, RTEMS developers
hope that by making a strong case to FreeBSD
kernel maintainers for some simple and helpful
changes, the LibBSD maintenance burden will be
manageable.
• The number of architectures supported by
LibBSD needs to be increased. LibBSD currently is
known to work on three architectures, while
RTEMS itself supports 18 architectures. RTEMS is
a good base reference for building on architec-
tures not normally accessible.
• Although not critical from a functional view-
point, compile-time warnings in LibBSD are cur-
rently ignored. The RTEMS build environment is
significantly different from the normal FreeBSD
kernel environment. However, it would be nice to
see the warnings addressed. As always, many
warnings are harmless, but some could be indica-
tive of real bugs.

The FreeBSD code base is important, and there
are a number of users of the source code reusing
it in ways the original authors never imagined.
The RTEMS Project openly and at every possible
opportunity acknowledges the code RTEMS has
taken from FreeBSD. It is an incredible resource
and the RTEMS Project is thankful it is
available for use. •

References
VMEBus Industry Trade Association (VITA) Real-Time Executive Interface Definition (RTEID) 2.1 standard. The RTEID 2.1 is archived
at ftp://ftp.rtems.org/pub/rtems/people/joel/RTEID-ORKID/RTEID-2.1/.

Newlib C Library. https://sourceware.org/newlib.

Cygwin. https://www.cygwin.com.

G. Gilliand, J. Sherrill. “A Unique Approach to FACE conformance.” U.S. Army Aviation FACE Technical Interchange Meeting.
http://face.intrepidinc.com/wp-content/uploads/2016/01/DDC-I-OAR-A-Unique-Approach-to-FACE-Conformance.pdf. (Feb. 2016)

“Proceedings of Technology Showcase Held in Huntsville, Alabama on 7–9 August 1990,” includes a presentation by a representa-
tive of the Army Missile Research Development and Engineering Center at Redstone Arsenal, Alabama, on RTEMS.
http://www.dtic.mil/dtic/tr/fulltext/u2/a247043.pdf. (Aug. 1990)

KA9Q. http://www.ka9q.net/code/ka9qnos/.

A. Subbarao. “POSIX—25 Years of Open Standard APIs.” http://www.rtcmagazine.com/articles/view/103514.

FACE Consortium products including the Technical Standard, Conformance Test Suite, and other supporting
artifacts. https://www.opengroup.org/face.

CHRIS JOHNS is a RTEMS developer and real-time software engineer with an interest in
low-level tools and debuggers. He lives in Sydney, Australia, with his family and two dogs.
chrisj@rtems.org
JOEL SHERRILL is Director of Research and Development at OAR Corporation in Huntsville, Alabama,
and a member of the original RTEMS team. joel@rtems.org
SEBASTIAN HUBER is a RTEMS developer currently focused on the SMP support. He lives in Munich,
Germany. sebh@rtems.org
BEN GRAS is a systems security researcher at VU University in Amsterdam, Netherlands, and an
RTEMS contributor. He lives in Amsterdam. beng@rtems.org
GEDARE BLOOM is an assistant professor of computer science at Howard University in Washington,
D.C., and a maintainer of RTEMS. gedare@rtems.org

