
4 FreeBSD Journal

ver time, Unix operating systems have evolved a variety of
mechanisms to launch programs and influence their execution.
To put this into perspective, let’s take a quick tour of the dif-

ferent kinds of programs that run on a typical FreeBSD system.

When the computer first boots up, the
rc(8) mechanism launches programs called
“services” that can perform one-time system
initialization tasks, or execute daemons to
run in the background. These services can
also be stopped and started while the com-
puter is running.

Every minute the computer is running, the
cron(8) daemon wakes up and launches
scheduled tasks. Cron also supports the abil-
ity to run at(1) jobs after a certain time
interval has passed. It can also run
batch(1) jobs when the system load aver-

age falls below a certain threshold.
There are many other mechanisms for

launching programs. Inetd(8) launches
programs when an incoming socket is creat-
ed. nice(1) runs programs with a modi-
fied priority level. chroot(8) launches pro-
grams with an alternate root directory.
service(8) launches programs with a
“supervisor” process that can restart the
program if it crashes. Jail managers like
jail(8) launch programs within a jailed
environment. Virtual machine managers like
iohyve(8) launch programs that execute a

S E E
T E X T
O N L Y

By Mark Heily

GETTING
THE JOB

DONE

The init
System
Debate

RE
LAUNCHED

GETTING
THE JOB

DONE

OO

July/August 2016 5

bhyve virtual machine. The cloudabi-run(1)
command launches programs with a specific set
of file descriptors pre-allocated.

Each of the mechanisms described above has
its own configuration file format, its own particu-
lar style of usage, and essentially lives in its own
isolated world. What if I told you there was a
common underlying theme behind all of these
different launchers? What if it were possible to
have a single “launch all the things” mechanism
that could become a common foundation for
many of the operating system tools we enjoy
today, as well as tools of the future?

I’ve started to explore these questions in
greater detail, and have some interesting results
to share. I’ve produced a working implementation
of a new system called “the jobd job frame-
work,” or just “jobd” for short.

Overview of the Job Framework
jobd is a mechanism for launching and monitor-
ing “jobs” that run within a single operating sys-
tem instance. Jobs can be thought of as 1) some
amount of work to be done, 2) the dependencies
and preconditions before work can be started, 3)
various ways to observe and interact with the pro-
gram doing the work, and 4) a set of cleanup
actions to perform after the work is complete.

That’s quite a mouthful, so let’s break it
down into smaller chunks. We should
start by going over the important con-
cepts and common terms used in the job
framework.

A job is defined by a JSON configura-
tion file called a “manifest.” The manifest
contains a combination of a program, an
execution context, properties, dependen-
cies, and resources. These terms have spe-
cific meanings that are discussed below.

Within a job, the “program” is literally
the path to the executable and the ARGV
argument vector passed to the
execl(3) system call. This begins the execution
of a new program image, right after jobd calls
fork(2) to create a new process.

The job’s “execution context” represents all the
changes to the child process that occur after the
fork() call, but prior to the exec() call.
Examples include: setting the user-id and group-
id, calling chroot(2), setting resource limits,
setting the umask and nice value, and so forth.

System administrators need the flexibility to

customize various aspects of how the job runs.
For example, they might want to change the port
number that a network daemon listens on. Job
“properties” are the mechanism that allows for
this control.

Job properties are simple key/value strings that
can be substituted inside the manifest. Properties
can also be queried directly, using library calls or
the jobcfg(1) command. Taking it one step
further, properties can be used to generate appli-
cation-specific configuration files using a tem-
plate; for example, the main httpd.conf file
used by Apache.

Jobs can have “dependencies” that determine
when the job should be stopped and started. Jobs
can be started on-demand, on a fixed timer inter-
val, at certain calendar dates/times, or when man-
ually enabled by a system administrator. Jobs can
also depend on the status of other jobs, so you
can start and stop multiple jobs in a certain order.

Jobs can have “resources” which represent
external things that are automatically created
before the job starts, and are automatically
destroyed when the job terminates. The job
assumes ownership of the resources. This is most
useful in combination with jails, as it allows you
to create a jail on the fly to run a job.

We’ve covered the main aspects of what con-

stitutes a “job” as far as the job framework is
concerned. If you think back to the list of launch-
ers in the first part of this article, there isn’t a
one-to-one mapping between what jobd offers
and any of the existing mechanism. Jobd is very
similar to rc(8) in that it supports all of the
things you would need to manage services, but it
isn’t gravitationally bound to init(1) and the
boot/shutdown process. It is more of an automa-
ton, constantly running in the background and

6 FreeBSD Journal

reacting to events and conditions by starting,
stopping, or restarting programs.

Now that the scope of the job framework is
clear, it is worth mentioning a few things that are
explicitly not in scope for the project. Unlike most
of the init system replacements that have come
out in the last few decades, jobd(8) is not try-
ing to replace init(8) or usurp the role of pid
#1. It will not handle early-boot tasks like setting
up the console and pttys, or mounting filesys-
tems listed in /etc/fstab. If you boot into sin-
gle-user mode, I expect that this will still be han-
dled by init(8) and rc(8) in much the same
way as it is done now.

Despite the flexibility of the job framework to
cover a wide range of use cases, I still would like
to see it used first and foremost as a replacement
for rc(8) and the current FreeBSD init system.
This is a position that is likely to reawaken a lively
debate among the community, as there are pas-
sionate defenders of the status quo. Nonetheless,
it is a debate worth having again, in light of the
potential benefits of adopting the job framework.

Some will ask, “Why change? Shell scripts
have served us well since the beginning of BSD.”
I can’t argue with the historical truth of that
statement, but I will point out that the landscape
of modern computing is far different from what it
was during the early days of Unix. New problems
demand new solutions.

Here are some reasons why I think that relying
on a collection of shell scripts to power the init
system is holding us back:
• The rc(8) system was not designed to run in
the background and react to events and condi-
tions that call for taking action. It runs once at
boot time, and once at shutdown.
• Shell variables are simple pairs of strings that
share a single global namespace. You can’t build
a complex hierarchical data structure out of sim-
ple key/value pairs. Without support for informa-
tion-rich data structures, the rc(8) system will
be limited to simple problem domains.
• Shell scripts mix data and code in the same file.
This makes it impossible to programmatically edit
rc(8) scripts, except for very trivial edits like
changing the name of a variable.
• Shell scripts are imprecise, and unless they are
written with a high level of paranoia, it is possible
for their environment to be polluted by the per-
son running the script.
• Managing large numbers of servers at scale

requires the use of a configuration management
system, such as Puppet or Chef. Teaching these
systems how to configure individual services is
very difficult, because each service has its own
configuration file format and location, and these
vary across platforms.
• The rc(8) system is not portable. Each variant
of Unix has its own spin on the classic design, be
it System V or BSD. Independent software ven-
dors do not have the resources to support all of
these different init systems, so they will target the
most popular platforms such as commercial Linux
distributions.

The job framework attempts to solve all of the
problems listed above, or at least move us in the
right direction.

History and Motivation
jobd grew out of an experiment to write a clone
of the launchd(8) system found in MacOS X.
Its command line syntax and fault-handling capa-
bilities are heavily inspired by the Service
Management Facility (SMF) system in Solaris. It is
not merely a clone or mashup of these two Unix
utilities; rather, it borrows liberally from the best
features of each, while avoiding some of the less
desirable aspects.

I was motivated to write jobd partly in
response to the systemd debacle that caused a
major schism in the Linux community. The adop-
tion of systemd was a major contributor to my
decision to switch my personal computer from
Linux to PC-BSD. Having made the switch, I start-
ed looking around for little side projects that I
could do to give back to the FreeBSD Project.

The desire to create a new init system was
there, but it needed a spark to get things going.
Coincidentally, around the time I switched to PC-
BSD, the NextBSD project was announced, and
after listening to a few of Jordan Hubbard’s talks
about the benefits of launchd, I was ready to
help out.

Unfortunately, upon closer inspection, I did not
agree with the technical approach that NextBSD
used to port launchd; namely, the decision to
write a partial implementation of the Mach
microkernel as a compatibility layer, to essentially
make FreeBSD pretend to be a half-baked variant
of MacOS X.

I had previously spent years porting the
kevent(2) API from FreeBSD to other operating
systems, and knew firsthand the pain involved in

I S I L O N The industry leader in Scale-Out Network Attached Storage (NAS)

With offices around the world,
we likely have a job for you!
Please visit our website at
http://www.emc.com/careers
or send direct inquiries to
karl.augustine@isilon.com.

We’re Hiring!
We’re Hiring!

Isilon is deeply invested in advancing FreeBSD
performance and scalability. We are looking
to hire and develop FreeBSD committers for
kernel product development and to improve
the Open Source Community.

July/August 2016 7

creating compatibility layers to make one kernel
pretend to be a different kernel. This experience
made me highly skeptical of the decision to cre-
ate a Mach compatibility layer for launchd.
Even if the Mach compatibility layer worked per-
fectly when added to the FreeBSD kernel, it
would add a lot of technical debt that might not
be acceptable to the FreeBSD Project. It would be
difficult and time-consuming to port to other
Unix-like operating systems, and there would not
be much of an appetite for it.

I wanted something that worked “right now”
on existing operating systems, using standard
POSIX APIs where possible, so I started a new
implementation of launchd from scratch, and
called it “relaunchd.”

Work Thus Far: Implementation
A relatively stable and feature-complete version of
relaunchd was created and released as version
0.6. This contained most of the features found in
the original launchd.

At an iXsystems hackathon, I worked closely
with Kris Moore to try using relaunchd to man-
age a new PC-BSD service called SysAdm. We ran
into several issues that pointed at the inadequacy

of the original launchd design with respect to
how software is packaged for FreeBSD. MacOS X
does not have the concept of a ports tree, and
software is usually installed via a graphical
installer program that takes care of interacting
with launchd. It turned out that human interac-
tion with launchd leaves a good bit to be
desired.
Launchd also does not have any support for

user-defined properties, or exposing properties
and methods to the user to manipulate how a
service is launched. People coming from a back-
ground of using rc(8) would be understandably
unhappy about losing the ability to define a
$foo_flags variable in rc.conf to control the
foo service, for example.

Another weakness of the launchd design is
the lack of a fault management facility. If a dae-
mon crashes, launchd will sit in an infinite loop
trying to restart it. There is no built-in mechanism
for determining that a service is faulty, and doing
something about it. I have spent several years
administering Solaris 10 servers, and like the idea
that misbehaving services can be transitioned to a
faulted state. In jobd, it will be possible to define
a fault handler script that is executed whenever a

8 FreeBSD Journal

job fault is detected. This fault handler could do
pretty much anything: send an email to an
administrator, pop up a window on a desktop,
send an alert to a monitoring system, and so on.

I started to be concerned at the mismatch
between what I wanted relaunchd to do, and
the original launchd design. This led me to take
a step back and ask, “What are the problems
that we are trying to solve, and is the classic
launchd design an adequate solution?” As is
often the case, the real world throws more prob-
lems at you than you originally anticipated.

This growing frustration with launchd led me
to think about the concept of a job framework as
a low-level operating system construct. This
framework would provide a library and support-
ing command line tools to allow for building a
variety of other operating system facilities, such
as a service manager and a cron(8) replace-
ment. I started to visualize splitting relaunchd
in half; the lower layer dealing with starting and
stopping jobs, and the upper layer presenting the
face of a "service manager" to the world. Over
time, other domain-specific front ends could be
added, all of them sharing the same back-end
job manager.

Coincidentally, other developers at the
hackathon were working on the iocage jail
manager tool, and the iohyve virtual machine
manager. I started to look at the nascent “lower
layer of relaunchd” as something that could
be reused by iocage and iohyve, since funda-
mentally a jail and a virtual machine are just
processes.

This idea of sharing code across disparate tools

may sound crazy, but if you look closely,
what do rc, iocage, and iohyve
have in common?
* They start daemon processes, either
automatically when the system boots, or
manually when requested by an admin-
istrator.
* They allow these daemons to be
stopped, started, enabled, and disabled.
* They allow system administrators to
customize certain aspects of how the
daemons are started, similar to the con-
cept of “job properties.”
* In the case of iocage and iohyve,
they create virtual network interfaces for
each process.
* They may require firewall modifica-
tions, such as adding NAT rules or filter-
ing rules.

In addition to supporting a wider variety of use
cases, I also wanted to avoid “feature creep”
that would see relaunchd slowly assume new
roles and responsibilities that would cause it to
become a giant mess. In a layered design, it’s
important to have clear separation of concerns
between the layers, and it was not clear where
the line should be drawn between relaunchd
and tools that are built on top of relaunchd.
Even the name, “relaunchd,” creates the
impression that it is purely an init system in the
style of launchd(8). In order to be useful in a
wider variety of situations, it needed to stop
being an init system altogether.

To avoid the feature creep problem, the job
framework provides a core set of features to be
consumed by higher layers in the stack. These
higher layers are expected to handle the details
of job specialization and customization to fit their
specific problem domain. For example, if iocage
wanted to offer a “Jail Marketplace” where peo-
ple could download pre-configured jails, all of
this functionality could be implemented within
iocage itself, and not require any modifications
to the underlying job framework.

Once the overall picture of what a job frame-
work should look like was in place, the decision
was made to rename the project to “jobd” and
make a clean break with the past. The existing
launchd(8) daemon would be renamed to
jobd(8), and the problematic launchctl(8)
utility would be retired and replaced with a new
set of command-line tools that would provide a
better user experience for developers, packagers,

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

July/August 2016 9

and system administrators.
At this point, I didn’t totally want to reinvent

the wheel when designing the new command-
line interfaces, so I borrowed some of the con-
cepts from the Solaris(TM) SMF framework, and
created three new CLI tools: jobadm(1), which
operates against the job database; jobctl(1),
which controls a single job, handing operational
requests like starting and stopping the job; and
jobcfg(1), which would handle everything
related to getting and setting job properties.

Owing to its simple design, relaunchd was a
few thousand lines of C code. With the new mis-
sion of jobd, I started to be concerned about
the potential challenges of implementing the new
job framework functionality in standard C. The
original launchd API was simple enough to
implement in C, but it would be hard to imple-
ment all of the powerful new functionality in C.
This led to the decision to rewrite the project in
C++ to take advantage of the richer set of data
structures and move to a more object-oriented
design.

Moving to C++ posed some initial challenges,
not least of which was my total lack of practical
experience with the language. After some initial
growing pains, the benefits of C++ started to
come to light, and it became easier to implement

powerful functionality that would have been diffi-
cult to do in standard C. Learning a new lan-
guage is also fun and interesting, and raises the
challenge level of whatever you are trying to
accomplish.

Goals
The overall goals of the jobd project are:
• Explore the idea of job management at the
operating-system level. This includes educating
people about job management concepts, and
getting developers to think about how to solve
problems using jobs.
• Be the best job management framework on the
market; provide a general purpose framework for
launching jobs within a single operating system
instance; handle all aspects of the job lifecycle:
setup, startup, supervise, kill, teardown. Be the
reference implementation of the job manage-
ment API.
• Make the easy things easy, and the hard things
possible; make it trivial to start processes in a
consistent manner. The hard thing is getting fire-
wall rules, jails, datasets, network interfaces, con-
figuration files, package dependencies, etc., all
playing nice; jobd will make it possible to tie all
of these things together with a single configura-

10 FreeBSDJournal

,

,

Testers, Systems Administrators,
Authors, Advocates, and of course

Programmers to join any of our diverse teams.

� DOWNLOAD OUR SOFTWARE �
http://www.freebsd.org/where.html

� JOIN OUR MAILING LISTS �
http://www.freebsd.org/community/mailinglists.html?

� ATTEND A CONFERENCE �
• https://2016.eurobsdcon.org/

• http://open-zfs.org/wiki/OpenZFS_Developer_Summit
• https://ohiolinux.org/ • http://ghc.anitaborg.org/

WE WANT YOU!WE WANT YOU!

The FreeBSD Project

� �

� �

TM

The FreeBSD Project

