TEXT
ONLY

ScaleEngine

and FreeBSD

When ScaleEngine was founded, it was based on FreeBSD

because that is what the principals were most familiar with.

Throughout the past eight years, the decision to use FreeBSD has

served us well and provided us with distinct competitive advantages.

How ScaleEngine Started

ScaleEngine started its CDN (Content
Distribution Network) entirely by accident.
Originally, ScaleEngine was an auto-scaling
application environment designed to host
forums, large web apps, and other high-com-
plexity high-traffic sites. After a short time, we
quickly started to push too much bandwidth
out of our primary colocation facility. In work-
ing around this problem, we quickly grew into
a CDN and eventually pivoted our business to
focus on that market.

Bandwidth in most colocation, and in
Internet transit in general, is measured at
“95th percentile.” The basic concept is that
the amount of traffic pushed to the Internet is
measured every 5 minutes throughout the
month. At the end of the month, the meas-
urements are sorted, and the top 5% are dis-
carded. The peak amount of usage that
remains determines your bill. Usually there are
two prices involved. The customer has a com-
mitment level—a minimum amount of band-
width they buy each month—at a fixed price.

Then there is a burst or overage price. The
customer is able to use more than the com-
mitted amount of bandwidth, but if their
95th percentile exceeds the commitment,
they must pay for the additional usage at
the higher burst price. This has some benefit
to both sides. For the transit providers, it
ensures that customers pay for the amount
of bandwidth they sustain during peak
times, which ensures the transit provider can
keep that amount of capacity available and
encourages customers to commit to a larger
amount of bandwidth to avoid the higher
overage rate. For the customers, it offers
them the flexibility to use more bandwidth
when needed while only having to pay for
the committed rate. The customer also has
the ability to use the entire capacity of the
connection for up to 5% of the month
(approximately 36 hours), without any addi-
tional cost. The busiest hour of each day or
the busiest 90 minutes of each weekday do
not count against your final bandwidth bill.
ScaleEngine was in a position where we
did not want to increase our bandwidth
commitment, but also needed to avoid pay-
ing expensive overage fees each month. The
majority of the traffic that was consuming
the bandwidth was large image files we
hosted for various sites, including a screen-
shot-sharing application. To offset this, we
rented a server on the east and west coast
of the U.S. Bandwidth for these servers was
priced differently, based on total monthly
volume, rather than peak usage. We direct-
ed traffic for static content—mostly the larg-
er images—to these servers, which received
the content via rsync from our primary site.
This reduced the bandwidth consumption of
our primary colocation to well within our
commitment, since the majority of the traf-
fic was now the plain text content of the
sites we hosted. Demand for faster-loading
images saw us add similar servers in Europe.

Dummynet: Smart Traffic
Shaping
From the customer side, the downside to

95th percentile billing is that if your peak
time during a month exceeds that free 5%,

then you pay for that peak amount of traffic
as if you had used that rate for the entire
month. This means that there is often an
advantage to smoothing out spikes in your
usage. This is where Dummynet comes in.
Dummynet is the traffic-shaping feature of
IPFW, FreeBSD’s native firewall. Using a pair
of pipes and some queues, we were able to
rate-limit replication traffic between our
servers such that a large number of new
files would no longer create a spike in traf-
fic. Instead of being replicated at full speed,
saturating our connection, and creating a
large spike, replication would be rate-limited
by a pipe and would yield to higher-priority
customer traffic in the queue. This flattening
of the spike saved thousands of dollars
while only causing a minor replication delay.

For more on IPFW and Dummynet, see
the May/June 2014 edition of the FreeBSD
Journal.

Reliability and Flexibility

When you have to manage more than 100
servers, it helps to have a stable and reliable
OS. With our server lifecycle we have a mix
of FreeBSD versions, 9.3, 10.3, and -CUR-
RENT. Having painless upgrades inside a sta-
ble branch (10.2 to 10.3) is a huge benefit,
and we can quickly upgrade to the latest
version without worrying about fallout in
our application stack.

FreeBSD’s approach to third-party libraries
and applications has been an important part
of our ability to deploy new features. The
FreeBSD ports system is a rolling release,
meaning that new applications and updated
versions of those applications are added
daily. The ports system also allows us to not
be at the mercy of the vendor-provided
compile-time options. We use
poudriere(8) to compile our own ver-
sions of the set of packages we use, with
the options that suit us. However, if we
need something else, especially just tem-
porarily, we can fall back to the packages
provided by FreeBSD. The fact that the same
ports tree works on all three supported
branches of FreeBSD means we can have
the latest version of nginx on every server,

July/August 2016

19

ScaleEngine

be it 9.3 or the latest -CURRENT. Being able to
get the latest version of nginx rather than what
was the latest version when FreeBSD 9.0 was
released, means we can rapidly adopt new
upstream features. The FreeBSD ports system pro-
vides another important feature: multiple versions
of the same application. We can choose between
PHP 5.6 and PHP 7.0, or nginx and nginx-devel. A
quarterly stable branch of the ports tree is avail-
able for those who wish to avoid the daily churn.

How FreeBSD and ZFS Made the
Difference

When we started selling CDN services directly
rather than as part of a hosting service, the archi-
tecture needed an overhaul. We had a number of
issues that needed addressing, but FreeBSD pro-
vided a solution to each one of them.

We migrated away from rsync, which was too
slow once the number of files grew beyond a few
tens of thousands, and we needed to be smarter
about which content we cached on each differ-
ent edge server to avoid wasting precious storage
space. We also needed to avoid wasting band-
width replicating data that was rarely requested
after it was a few weeks old. Again, the goal was
to reduce the bandwidth pressure from our pri-
mary storage servers, to avoid having to buy
additional expensive Internet transit. We switched
to the nginx caching module, which saves files to
the edge server the first time they are requested.
This worked well at first, using hash-based direc-
tories and filenames to break the large number of
files into manageably sized directories. Eventually
we encountered performance problems with UFS,
the default FreeBSD filesystem. The “dirhash,” a
cache of directory metadata, was limited by
default to only a few megabytes of memory. Even
when the size of the cache was expanded and
the time-to-live increased, walking through the
directories was painfully slow, which adversely
affected cold startup times. Switching to ZFS
changed everything.

ZFS has a much smarter caching system. Most
filesystems use a standard LRU (Least Recently
Used) cache, which, when full, removes the item
used the longest time ago to make room for a
new item. ZFS, instead, uses the ARC (Adaptive
Replacement Cache), which consists of four lists.
The first, the MRU (Most Recently Used), is very
similar to LRU. There is also a separate MFU

FreeBSD Journal

(Most Frequently Used) cache for files used most
often. This provides an important optimization:
when walking through the entire directory struc-
ture of cached objects, which can cause the
entire LRU/MRU to be cycled, all of the items that
were in the cache are removed and replaced by
the entries being walked. Now the cache is full of
items we likely will not use again, and we have to
wait for the cache to recover to provide a reason-
able performance boost. With the addition of the
MFU, the files we use most frequently are not
purged from the cache by the directory walk.
Now we also had control over how much of the
filesystem cache could be used for metadata.
Unlike UFS, ZFS will only purge items from the
metadata cache if it is full or if the memory is
needed elsewhere. ZFS limits the metadata to
25% of the total cache size by default, but this
can be adjusted if needed. In one of our use
cases, hosting the thumbnail images for a very
popular related content plugin, we were storing
more than 30 million small files. The files were
stored on an array of SSDs, so throughput was
not an issue. ZFS allowed us to cache only the
metadata in ram so that the entire directory
structure would reside in ram, and only reading
actual data blocks would result in reads going to
the SSDs. This greatly lowered latency on cold
files, compared to caching a mix of data and
metadata for hot files and nothing for cold ones.

ZFS also brought with it a number of other
options and features we could use and provide to
our customers. One of the first lessons we quickly
learned was to create a dataset for each cus-
tomer. When we had just one dataset with a
directory for each customer’s video files, with a
full regimen of snapshots, if a customer canceled
their account we couldn’t recoup the space with-
out removing the snapshots. This would cause us
to lose the history for every other customer in the
process. Once we transitioned to a dataset per
customer, we could remove snapshots or the
entire filesystem for a customer and get the
space back immediately. This also allowed us to
create reservations and quotas for customers, to
ensure they always had enough space, or to limit
the amount of space they used.

ZFS also brought with it the final nail in rsync’s
coffin, block-level replication. Now we can repli-
cate entire filesystems to our edge servers as an
atomic operation. Doing an incremental update

only takes the time required to transfer the actual
blocks that have been added or updated; there is
no “scan” time or directory walking involved.
When dealing with 30 million small files, the time
savings over rsync are astronomical.

ScaleEngine hosts the package repository for
PC-BSD using ZFS replication. A dataset was cre-
ated on one of our storage servers and the PC-
BSD team uploads the latest packages into a new
directory. As they are uploading, our server takes
snapshots every 15 minutes and replicates those
to an array of edge servers. Once the upload is
complete, the directory is moved in place of the
old repository and the edges atomically update.
Combined with our Global Server Load Balancer
(GSLB), which stops routing traffic to an edge if
its replication is delayed, this strategy has worked
exceedingly well. Now that ZFS has support for
resuming interrupted replication and the PC-BSD
project has upgraded the connection of its build
servers, we will start experimenting with having
PC-BSD push a ZFS dataset directly to us rather
than transferring the files individually.

Observability

Any good system administrator should be like a
petulant 5-year-old asking “why” in a recursive

loop. FreeBSD provides the tooling required to
answer such questions, which goes a long way to
being able to solve problems. The top (1) com-
mand in FreeBSD is very powerful while at the same
time not consuming a large amount of resources
itself, which would limit its usefulness for measur-
ing the load on the system. It also has an I/O mode
which can answer the question: which process(es)
are causing all of this I/O? Then fstat (1) can tell
which files that process has open. For a broader
view, gstat (8) shows the I/O broken down by
GEOM, which corresponds to disks and partitions. If
throughput is not as high as expected, look at the
number of IOPS being consumed. Does the device
have any IOPS remaining with which to service your
requests? The average latency measure can tell you
if a disk is struggling to keep up with the load. A
higher than expected latency under modest load
can suggest a failing disk.

The excellent diagram below by Brendan
Gregg (http://www.brendangregg.com/Perf/
freebsd_observability_tools.png) illustrates the
various parts of a FreeBSD system, and which
tools can be used to observe them.

Dtrace has been invaluable in helping us track
down issues in our application stack and follow
them through the kernel. Whether you want to

FreeBSD Performance Observability Tools

Operating System Hardware o
fstat ktrace truss netstat -s Yeiica Various:
\ XX X [1]] / systat
AN gstat \ \ Applications //// lockstat sysctl
vmstat -P
k _ System Librariﬁf / / / top -P
\ X \ Sys?em Call Interface / / / / j / CPU
D 4 Interconnect
dtrace % v vrs Sockets */ /| / Scheduler ¥ CPU
< [\ urs | zFs TCP/UDP ¥/ «—top ps —| 1 K&
o
% | GEOM IP v Virtual 41 procstat Memory | pmcstat
© | Block Device Interface Ethernet Memory Bus
i : : Y\ vmstat o PO
\ - Device Drivers sysctl vm DRAM
/rmstat/—i pmcstat — | /O Bus \ systat -vmstat
i ; vmstat -z
tostat Expander Interconnect |0 Bridge tcpdump 4
I T ipmitool
1/0 Controller | | Network Controller | / ;
| | | Interface Transports | | —
| Disk | l Disk | | Swap | netstat ,v| Port | | Port | Supply
pstat -s systat -ifstat

July/August 2016

21

ScaleEngine

watch the congestion window of a specific TCP
connection or generate a graph of the average
write latency to your disk array, it is just a matter
of a few lines of D code. We used a series of
DTrace probes to monitor a server during a local
ZFS replication—duplication 10-TB of customer
data to a second dataset. By looking at how long
it took to flush all dirty data to the pool, the
“sync latency,” we were able to optimize the set-
tings and achieve a 25% performance gain. By
adjusting the maximum amount of dirty data, the
dirty data threshold (the buffer is nearing full, so
a sync is started), and the transaction timeout, we
were able to delay the sync cycle (which suspends
reads to reduce write latency) to only happen
once 24 GB of data was waiting to be written,
which would take around 5 seconds to write. The
default tuning meant that a write happened every
time 4 GB of data was dirty, causing the pool to
frequently switch between reading and writing.

Networking

Advancements in the FreeBSD network stack have
been extremely helpful to us. The pluggable TCP
congestion-control algorithm system allowed us
to experiment with different algorithms and
determine that HTCP provided the best perform-
ance for trans-Atlantic ZFS replication. In cases
like ours, often called long, fat networks, fluctua-
tions in latency are not an indicator of conges-
tion, and minor packet loss is not unexpected.
HTCP is more aggressive than the default New
Reno algorithm and gets up to speed faster and
recovers from packet loss more quickly.

Support for modifying the default, initial-con-
gestion window (RFC6928) was required to allow
us to remain competitive with the small-file per-
formance of the large competing CDNs. This set-
ting limits the number of segments of data that
can be sent before receiving acknowledgment
from the other side. The initial value before the
experimental RFC was between 2 and 4 segments
and was changed to 10. This greatly reduced the
load time for small HTTP objects, as the total
number of round-trips would drop by 4.
Increasing the size of the initial congestion win-
dow also allows for faster recovery in the case of
packet loss during the early stages of the connec-
tion. This can greatly improve performance when
the cause of the packet loss is not congestion,
especially in the case of wireless connections.

FreeBSD Journal

With FreeBSD 11, the entire network stack has
become pluggable, in such a way that different
applications can use a different network stack.
Theoretically this would allow us to use one set of
optimizations for traffic from our edges to end
users, and another for traffic over our backhaul
network. This could become especially important
because of the different types of traffic we serve.
Flash video streams are a single long-lived con-
nection at a constant modest bitrate. To provide
the best experience, the focus should be on con-
sistency and avoiding latency and packet loss. HLS
video streams are a constant series of medium-
sized (~1 MB) HTTP requests. Maximum burst
performance is the most desirable outcome; how-
ever, if the device is mobile, via 4G or WiFi, pack-
et loss can be expected, but does not necessarily
indicate congestion. HTTP Progressive streaming,
is similar to a regular download, but done as a
series of HTTP Range Requests. This method is
typically used by mobile devices, desktop
browsers, HTML5 players, and set-top boxes. In
this case, the optimal strategy is to avoid conges-
tion while sending the data as quickly as possible.
In the final case, HTTP Downloads, like the week-
ly episodes of the BSDNow.tv podcast, or PC-BSD
packages, the goal is to avoid contention with
the more latency- and congestion-sensitive
streams coming from the same server, while offer-
ing the best possible speed.

Final Thoughts

To summarize why we choose FreeBSD to power
our business: the world’s most respected net-
working stack combined with the most reliable
filesystem ever developed were brought together
as an actively developed but extremely stable
operating system all under a liberal, copyfree
license. It is no wonder more bits are pushed by
FreeBSD than anything else. e

ALLAN JUDE is VP of Operations at ScaleEngine
Inc., a global HTTP and Video Streaming CDN,
where he makes extensive use of ZFS and
FreeBSD. He is also the host of the video podcasts
BSDNow.tv (with Kris Moore) and TechSNAP.tv. He
is a FreeBSD src and doc committer, and was
elected to the FreeBSD Core team in the summer
of 2016. Allan is the coauthor of FreeBSD
Mastery: ZFS and FreeBSD Mastery:

@ Advanced ZFS with Michael W, Lucas.

