
FreeBSD Toolchain

30 FreeBSD Journal

As with other BSD distributions, FreeBSD has the concept of a base system,

an integrated kernel, and core userland, which are developed, tested, and

released together by a common team. The userland includes the C lan-

guage runtime, the build toolchain, basic system utilities, and some third-

party libraries and applications. The toolchain includes the compiler and

linker, which translate source code into executable objects, and related

utilities for inspecting or modifying those objects.

S E E
T E X T
O N LY

BY
ED
MASTE

In addition to this base system, there’s a third-party software ecosystem man-
aged through the FreeBSD ports tree and binary packages. Over 26,000 third-
party software packages exist in the ports tree.

For most of its history FreeBSD relied on the full GNU toolchain suite, includ-
ing the GNU Compiler Collection (GCC) compiler and GNU binutils. They served
the FreeBSD Project well from 1993 until 2007, when the GNU project migrated
to releasing its software under the General Public License, version 3 (GPLv3). In
contrast to version 2 of the license, GPLv3 places a number of new restrictions
on software users, and FreeBSD developers and users found these objectionable.
As a result, the GNU toolchain in FreeBSD was not updated to a new upstream
version and quickly became outdated.

Beginning shortly after that transition, a number of developers in the FreeBSD
Project started updating components of the FreeBSD toolchain to modern, copy-
free alternatives. Some aspects of the toolchain are architecture-dependent, and
in general the tools described below apply to FreeBSD’s Tier-1 architectures.

Compiler
The LLVM project is a collection of modular and reusable components used to
build compilers and other toolchain utilities. It began as a research project at
the University of Illinois and has since grown to become a production-quality
tool set used in proprietary and open-source software and academic settings.
Clang is the C and C++ compiler included in the LLVM suite.

Sept/Oct 2016 31

We’ve experimented with Clang in FreeBSD
since 2009, starting with a snapshot from the
upstream project’s Subversion repository. When
first added, it was made available as an option to
facilitate testing and development, but it was not
enabled as the default compiler for some time.
When FreeBSD 10 released in January 2014, it
included Clang as the system compiler (that is,
installed as /usr/bin/cc) for the 32- and 64-
bit Intel x86 architectures. It was later made the
default for the 32-bit FreeBSD ARM port. The 64-
bit ARM port began with Clang as the system
compiler.

Clang includes some support for the MIPS and
PowerPC architectures, but is not yet capable of
replacing the system compiler there; those archi-
tectures continue to use GCC.

FreeBSD 11 includes Clang 3.8.0, and work is
underway in FreeBSD-CURRENT to update to
Clang 3.9.0.

Linker
The linker takes as input individual object files
produced by a compiler or assembler and links
them into an executable binary or library. To date
we’ve used the GNU linker in FreeBSD, most
recently updated to version 2.17.50 in February
2011. This linker lacks link-time optimizations and
support for certain debugging features.

GNU ld in the base system also lacks support
for AArch64 (arm64) and RISC-V, two CPU archi-
tectures recently added to FreeBSD. Building
FreeBSD for these currently requires the linker be
installed from the ports tree or as a package, in
which case it will be used automatically.

The LLVM family of projects includes a linker:
LLD. It is a high-performance linker with support
for ELF, COFF, and Mach-O. Where possible, it
maintains command-line and functional compati-
bility with existing linkers such as GNU ld, but
LLD’s authors are not constrained by strict com-
patibility where it hampers performance or
desired functionality.

Work began on LLD’s ELF support in July 2015
and has progressed very quickly; it currently self-
hosts on several of LLVM’s supported architec-
tures and includes almost all of the functionality
required to build the FreeBSD base system.

In comparison with GNU ld, in FreeBSD LLD
will provide AArch64 and eventually RISC-V sup-
port, full-program Link-Time Optimization (LTO),
support for new Application Binary Interfaces

(ABIs), other linker optimizations, debugging fea-
tures, and much faster link times.

As with early experiments with Clang, LLD will
first be added to FreeBSD as an option and will
not be installed as the system linker
(/usr/bin/ld). It will be available by adding
-fuse-ld=lld to the compiler’s command
line arguments (for example, via the CFLAGS
variable).

We’ve included LLD 3.9 alongside the Clang
3.9 update and expect it to be available in
FreeBSD-CURRENT in October or November
2016. It is expected to be added to FreeBSD 11.1
as well.

Binary Utilities
The toolchain includes a number of small binary
utilities for inspecting or modifying object files,
binaries, and libraries. These are tools that report
information about an object, binary, or library, or
transform an object’s contents or format. These
tools were historically provided by GNU binutils.

The ELF Tool Chain Project maintains BSD-
licensed implementations of essential compilation
tools and libraries for working with ELF object
files and binaries, and DWARF debugging infor-
mation. It began as part of the FreeBSD Project,
but became a standalone project in order to facil-
itate collaboration with the wider open-source
community.

For FreeBSD 11 we have migrated to ELF Tool
Chain’s implementation of addr2line,
c++filt, objcopy, nm, readelf, size,
strip, and strings. The libelf and
libdwarf libraries also come from ELF Tool Chain.

ELF Tool Chain also includes a version of
FreeBSD’s ar, brandelf, and elfdump utilities.
We will migrate to those in the future if they gain
compelling new features or improvements.

Runtime Libraries
A number of libraries are required to provide run-
time support for the toolchain. The compiler-rt
library comes from the LLVM project and includes
several components. Low-level target-specific
hooks required by GCC or Clang’s code genera-
tion are known as “builtins.” These are routines
that perform operations that the compiler will not
emit directly into the output object code.

Compiler-rt includes sanitizer runtimes that
provide Clang’s runtime support for identifying

erroneous software behaviour. AddressSanitizer
(asan) detects out-of-bounds access to heap,
stack, and globals, use-after-free and related
errors, and double and invalid free. It is available
by adding -fsanitize=address to the com-
piler’s command line.

The UndefinedBehaviourSanitizer (ubsan)
catches undefined behaviour; that is, an opera-
tion for which the language does not have speci-
fied behaviour. Examples include overflowing
integer operations (such as addition and bit shift-
ing), division by zero, and using uninitialized vari-
ables. The -fsanitize=undefined com-
mand line argument enables ubsan.

Clang includes other sanitizers in the upstream
repository, including ThreadSanitizer for detecting
data races in multithreaded applications and
MemorySanitizer for detecting uninitialized reads.
Work is underway to make these available with
the system compiler in a later FreeBSD version.

For C++ runtime support we use a combina-
tion of PathScale’s libcxxrt for low-level
Application Binary Interface (ABI) support. This
includes Run-Time Type Information (RTTI), excep-
tion handling, and thread-safe initializers. The
C++ standard library is LLVM’s libc++.

Debugger
A replacement debugger also comes from the
LLVM project: LLDB. As with the rest of LLVM,
LLDB is built as a set of reusable components,
and builds on other parts of LLVM and Clang.
LLDB has access to a full Clang compiler, which it
uses as the expression parser. This provides high
fidelity in interpreting the user’s expressions: LLDB
is capable of parsing any expression valid in the
original source code being debugged.

LLDB is included in FreeBSD 11 for the 32- and
64-bit ARM architectures, and 64-bit Intel
(amd64).

In addition to LLDB in the base system, the
GNU GDB debugger is available by building from
the ports tree or installing the package. It has
been updated and includes improved threading
support and kernel debugging. GDB 7.11.1 is
available with a simple pkg install gdb
command.

DTrace
FreeBSD 11 includes support for using
Compressed Type Format (CTF) data in userland.
This means that userland Function Boundary

Tracing (FBT) probes can have typed arguments
when the corresponding executable or libraries
are compiled with CTF. The FreeBSD base system
build infrastructure includes support for compil-
ing with CTF with a setting in the
/etc/src.conf file.

FreeBSD 11 also adds support for Statically
Defined Tracing (STD) probes in userland. A .d
file containing probe definitions can be included
in the list of source files, and the build infrastruc-
ture will automatically generate a header contain-
ing probe macros that can be referenced in
source files.

Future Work
Work is underway on a number of additional
toolchain components which will become avail-
able in FreeBSD in the future. LLVM provides a
code coverage tool llvm-cov, which can operate
in a mode similar to GNU gcov, and can operate
with Clang’s instrumentation-based profiling.
LLVM also provides an OpenMP runtime (libomp),
an Application Programming Interface (API) for
shared memory multiprocessing.

With LLD as the linker, two GNU binutils tools
remain: the assembler (as) and objdump. There is
currently no candidate to replace as. However, it
is actually not required to build the FreeBSD base
system on Tier-1 architectures: Clang’s integrated
assembler is used to build assembly source files.
GNU as could simply be removed, or a GNU as-
compatible driver could be built from the inte-
grated assembler. Objdump is also not required
by the base system build and could be removed.
LLVM provides an llvm-objdump that is currently
limited in functionality, but will likely be a viable
replacement in due course.

Ongoing efforts in the FreeBSD community
and in the upstream Clang/LLVM project are
attempting to bring the Clang, LLD, and LLDB
suite to the lower-tier FreeBSD architectures that
are still using GCC today. •

ED MASTE manages project development for
the FreeBSD Foundation and works in an engi-
neering support role with the University of
Cambridge Computer Laboratory. He is also a
member of the elected FreeBSD Core Team.
Aside from FreeBSD and ELF Tool Chain, he is a
contributor to a number of other open-source
projects, including LLVM, QEMU, and Open
vSwitch. He lives in Kitchener, Canada, with his
wife, Anna, and sons, Pieter and Daniel.

32 FreeBSD Journal

Meet BSD California • Nov 10 – 12 • Berkeley, CA
https://meetbsd.com • The 5th biennial MeetBSD conference will be held at UC
Berkeley. This conference provides a mix of formal presentations, unconference
activities, and opportunities to network with other BSD users and developers. The
BSDA certification exam will be available at this event. Registration is required to
attend this conference.

LISA 16 • Dec 4 – 9 • Boston, MA
https://www.usenix.org/conference/lisa16/ • The 30th Large Installation System
Administration conference will be held at the Sheraton Boston. There will be a
FreeBSD booth in the expo area. Registration is required to attend the conference
and a nominal fee is required to attend the expo.

Sept/Oct 2016 33

Eventsvents Calendaralendar
The following BSD-related conferences will take place in
November and December 2016. More information about these

events, as well as local user group meetings, can be found at www.bsdevents.org.

THROUGH DECEMBER 2016 BY DRU LAVIGNE

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Are you a fan of FreeBSD? Help us give back to the Project and donate today!
freebsdfoundation.org/donate/

TM

hT

k na

!uoy

! mudiirI

h
f ose uaceB
nitnocr ieht
gdelwonkac

Bseere FhT

hT

ibl
onitanods uoreneg
e hf tot roppused un
mocg inwollofe he tg

won oitadnuoFD S

k na

hin
s ah cuss on

. tcejorPe
r ofs einapm

o te klid lu

!uoy

!
dolG

wroft cejorP
rae wse eht

.draw
e unitnoco te blae r

TM

e hg tinvmo

revlSi

atidnuodfsbeerf

Fn of afu a yoe rA

/etando/gro.noati

k acbe vigs up leH? DSBeerF

 te tanodd nat cejorPe hto t

 !
d

yadot
sbeerft as rotsenvi
htt uok ceche saelP

orsnod/gor.onitadnuofd

y tinummocs uorenegf ot sill lufe

