
14 FreeBSD Journal

A lot of new things are coming in FreeBSD 11, but this article
will focus on a number of contributions I personally had a hand in.

The focus of these changes is improving the way FreeBSD
systems are booted, and how system updates are managed.

GELI and ZFS

IMPROVEMENTS

BY A L L A N J U DE

BCache Improvements
For many years the FreeBSD loader has imple-
mented a simple block cache to improve perform-
ance by avoiding physical reads of the same sec-
tor multiple times. When this cache was originally
developed, most systems booted from a single
disk, or a RAID volume that was exposed to the
operation system as a single logical disk. With the
advent of ZFS, it is very common for the loader to
need to access multiple disks in order to read all
of the data required to load the kernel and boot
the operating system. An IllumOS developer,
Toomas Soome, who is working on porting the

FreeBSD loader to IllumOS to replace the ancient
version of grub that they currently use, developed
a number of improvements to the block cache
and contributed those back to FreeBSD. The
improvements include growing the cache from 16
KB to 16 MB, implementing a rudimentary read-
ahead cache, and making it support multiple
devices. The 16 MB cache is divided evenly
amongst the number of devices detected at boot.
This can likely be optimized more in the future.

The read-ahead feature takes advantage of the
fact that for spinning media, reading a modest
number of contiguous sectors takes almost no
additional time compared to reading just a single

S E E
T E X T
O N L Y

Sept/Oct 2016 15

sector. When the next sector is read, it is returned
from the cache. If two different areas of the disk
are being read concurrently, this can provide an
immense performance gain. Additionally, support
was added for caching data fetched from CD and
DVD devices, which previously were not cached.
This change in particular made a large difference
for people who boot FreeBSD installer images via
remote media systems such as IPMI. The kernel-
loading portion of boot-
ing from a virtual CD (an
ISO image) via IPMI over
a LAN was reduced from
27 seconds to 7 seconds,
thanks to the read-ahead
cache. The difference
becomes even more stark
when the remote case is
considered. Without the
block cache, when
installing FreeBSD on a
remote server with 60ms
latency, a single 2K block
is read from the CD at a
time, and the next block is not requested until
that read operation for the previous block com-
pletes, 60+ms later. With the new read-ahead
cache and other bcache improvements, the time
to load the kernel from a remote CD dropped
from over 12 minutes to under 5 minutes. Now
when I have to build out a new server in
Singapore with 225ms of latency, I am very grate-
ful for Toomas’s hard work. After a number of
other contributions, Toomas Soome has officially
joined the FreeBSD Project as a committer.

ZFS Boot Environment Menu
The basics of what boot environments are and
how they work have been covered before (see
the September/October 2015 issue of this publi-
cation). To quickly recap, a “Boot Environment”
(BE) is an alternative root filesystem. ZFS provides
low-cost snapshots and clones, meaning that
before a change to the operating system like an
upgrade, the operator can take a snapshot to be
able to revert the system to in the case of a failed
upgrade. These snapshots can be used to create
clones, which are writable snapshots. Having a
selection of these clones to choose from allows
the operator to try different versions of the oper-
ating system, without disturbing the currently

installed version. Some filesystems like /home are
common between the different boot environ-
ments. This ensures that even as the operator
tries different versions of FreeBSD, their same
home directory is available in all of them. This
also means updated contents of the home direc-
tory are not lost if an upgrade is reverted.

Here is a look at the boot environments that
exist on my development machine:

As you can see, I have upgraded this machine
in-place from 9.0-RELEASE through to 11-CUR-
RENT. There is even a BE from when I was debug-
ging a ZFS memory consumption issue in 11-
CURRENT. In this BE the kernel contains a lot of
additional DTrace probes to try to track the
source of the problem. At the end of a debug-
ging session, I could reboot back to my standard
system, which was 10-STABLE. Being able to flip
back and forth with just a reboot, while main-
taining a common /home directory, and not
requiring fragmenting my free disk space across
separate partitions, is very powerful.

Originally, the only way to manage BEs was
with the beadm(1) utility. This posed an obvious
problem—if the system failed to boot, how do
you run the beadm utility to change the active
boot environment to the previous working sys-
tem? PC-BSD adapted a solution similar to that
used in IllumOS, where the beadm utility gener-
ates a list of BEs and stores them in a configura-
tion file that is read by the GRUB boot loader.
While this mostly works, it requires using a non-
standard boot loader, and can run into problems
when the config file gets out of sync with reality.
The GRUB config file loads its modules from the
original boot environment that was active when

NAME USED AVAIL REFER MOUNTPOINT
zroot/ROOT 11.3G 2.51T 392M legacy
zroot/ROOT/9.0_router 392M 2.51T 392M /
zroot/ROOT/9.1_before_upgrade 16.0K 2.51T 1.92G /
zroot/ROOT/9.1_freebsd 822M 2.51T 822M /
zroot/ROOT/9.1_pcbsd 16.0K 2.51T 2.05G /
zroot/ROOT/9.2_beta1 848M 2.51T 848M /
zroot/ROOT/9.2_pcbsd 16.0K 2.51T 2.10G /
zroot/ROOT/before_10_stable_2014-09-11 16.0K 2.51T 2.68G /
zroot/ROOT/10_stable_2014-03-24 647K 2.51T 3.35G /
zroot/ROOT/11_1100093 16.0K 2.51T 3.35G /
zroot/ROOT/11_r295359_zfsdebug 368K 2.51T 3.38G /
zroot/ROOT/default 8.95G 2.51T 3.42G /

16 FreeBSD Journal

GRUB was set up, which can cause the system to
be unbootable if that BE is removed and the con-
figuration file is not properly updated.

An easier and more reliable solution was need-
ed. The FreeBSD loader already has the ability to
read from ZFS and to list the available datasets,
as part of the ‘lszfs’ loader command. I used this
command as a template, and created a new
function that populates a set of environment vari-
ables with a paginated list of boot environments.
The main advantage to this approach is that it
reads from the live filesystem, so it is always
accurate. With help from Devin Teske, the
loader’s menu system, written in forth, now dis-
plays a menu and allows you to select which boot
environment to use as your root filesystem. This
was further improved with help from Toomas
Soome. One drawback was that the loader menu
system was not supported if the system was
booted with EFI, because our EFI loader lacked
the required serial emulation code. Again,
Toomas Soome to the rescue. The missing fea-
tures were implemented and the ZFS boot envi-
ronment menu is available in the FreeBSD loader
for both BIOS and EFI boot.

GELIBoot
Now ZFS BEs were supported across pretty much
any configuration, except when the user opts for
full disk encryption. When the pool containing
the root filesystem is encrypted, a separate /boot
filesystem (either a second ZFS pool, or a small
UFS partition) is required. This plaintext partition
is where the boot loader, kernel, and modules
like GELI and ZFS are stored. The system needs to
be able to bootstrap itself, which requires reading
the boot loader, which in turn reads and executes
the kernel, which loads the module to be able to
access the encrypted filesystem. The issue is that
this ‘two pools’ setup, breaks ZFS Boot
Environments. When the kernel lives outside of
the root filesystem, which is what is snapshotted
and cloned to make the various boot environ-
ments, it becomes impossible to switch between
BEs and load the matching kernel. Even if similar
snapshots were managed between the two
pools, it would be complex and error prone. A
better solution was needed.

Being the naive junior developer that I am, I
asked “how hard can it be?” For an initial imple-
mentation, a copy of gptzfsboot was made
with the name gptgeliboot. The original idea

was to create a single bootcode that could boot
from an encrypted UFS or ZFS filesystem. Subtle
differences in bits of the boot2 code, and no
clear way to define the behaviour of systems that
use both UFS and ZFS filesystems, caused this
approach to be abandoned. It was decided to
implement optional GELI support in each of the
existing GPT bootcodes instead. Initially, it was
necessary to determine if the boot partition was
GELI encrypted. As with most all GEOM classes,
GELI stores its metadata in the very last sector of
the provider, which is usually a partition, to avoid
conflicting with the backup copy of the GPT par-
tition table that is stored in the last sector of the
disk. The task seemed simple—read the partition
table, identify the starting LBA of the partition
and its size, and read the last sector of that parti-
tion. The hardest part about working in the boot-
code is that there are no error reporting facilities.
There isn’t even a panic(). Pretty much all
there is to work with is printf(), and when
things go bad, the system just hangs, unless you
manage to crash the BTX loader, which will give
you a dump of the assembly instruction pointers
and the like. This made development very itera-
tive and almost brute force. Make a change,
build, install it, reboot, fail, add printf, build,
install, reboot, fail, repeat. Of course, you must
moderate the quantity of printfs, because there is
no pager; once data scrolls off the top of the
screen, it is gone forever.

After the partition has been determined to
contain encrypted data, the GELI metadata needs
to be read to determine which algorithm to use
to decrypt it. Then the encrypted copy of the
master key must be decrypted with the user-pro-
vided password, and only then is it possible to
read from the partition. The existing bootcode
happened to be structured in such a way that it
was relatively easy to add decryption to the regu-
lar read functions when GELI was determined to
be present on a partition. The first large road-
block was encountered after adding all of the
dependencies for GELI (SHA256, SHA512,
HMAC, AES -CBC, and AES-CTS). The size of the
boot2 file (gptzfsboot) has grown from 47kb to
90kb. The boot1 code (gptldr), a 512 byte block
of assembly that loads boot2 into a specific posi-
tion in memory and executes it, only loaded the
first 64kb of boot2. Because this code runs in 16-
bit real mode, this is the largest block of data
that can be managed at once. After many failed

Sept/Oct 2016 17

attempts, and asking for assistance from many
senior members of the community, Colin Percival
finally solved the problem and extended gptldr
to load a specified number of 32kb segments of
boot2, allowing for it to easily be extended in the
future.

In order to reuse existing code from GELI and
OpenCrypto (the kernel's AES implementations,
used in IPSEC), some changes needed to be made.
A few declarations and ifdef's needed to be
moved in the GELI code to allow it to be compiled
for userspace. Once this was accomplished I set to
the task of breaking the OpenCrypto framework
up into separate files per algorithm, rather than a
single monolithic file. This made it possible to
reuse this code rather than importing another
copy of AES-XTS for use in the loader.

Much to my surprise, the GELI source code was
very elegant, and easy to follow, even by a junior
developer who had little prior experience with
cryptography. With this work complete, it is now
possible to boot FreeBSD from an encrypted UFS
or ZFS filesystem, with the only plaintext being the
contents of the miniscule freebsd-boot partition
(gptboot or gptzfsboot).

At this point, the system can be booted, but it
prompts the user for the encryption passphrase an
inordinate number of times. The test system was a
ZFS mirror of two disks. gptzfsboot would
prompt for the password for each of the two
disks, then load the loader. The loader would then
prompt the user for the passphrase for each disk,
and load the kernel. At the mountroot prompt,
the kernel would prompt for the passphrase for
each disk, and finally the system would boot.
With more than a few disks, this quickly becomes
exceedingly cumbersome. Colin Percival, Devin
Teske, and Kris Moore had already been suffering
from similar problems and developed a solution.
Colin implemented the
kern.geom.eli.boot_passcache sysctl,
which caches the password entered by the user at
the mountroot prompt and attempts to reuse it
on each new disk that is tested during the boot
process. This was extended with Colin’s help by
Kris Moore, to allow the passphrase entered in the
GRUB2 boot loader to be passed via the kernel's
environment to GELI, so that if the password was
correct, it would avoid re-prompting for the pass-
word at the mountroot phase. This avoided the
issue where the mountroot password prompt
would become buried by late device attach

notices. Devin Teske added an option to
loader.conf, geom_eli_passphrase_
prompt that would cause the FreeBSD loader to
prompt the user for the GELI passphrase ahead of
time, and pass it to the kernel via the environ-
ment, the same way PC-BSD’s GRUB2 was doing
it, again with the goal of avoiding the mountroot
prompt. Extra care is taken by the GELI kernel
module to zero the passphrase from the environ-
ment before single-user mode starts. The pass-
word prompt that was implemented in GELIBoot
was given a similar caching mechanism whereby it
automatically tries the previously entered
passphrase, and only if that fails, gives the user
three attempts to enter the correct passphrase.

The GELIBoot code needs the passphrase the
earliest, in order to read the loader from the
encrypted disk. This raised the obvious question,
how to pass the passphrase from the boot2
stage, to the loader. The answer lay in
gptzfsboot, where a flag is set,
KARGS_FLAGS_EXTARG, which tells the loader to
look for an additional argument after the end of
the regular set of arguments. Here, it will find
struct zfs_boot_args, containing informa-
tion such as the pool that is being booted, and
the root filesystem. The first member of this struct
is ‘size’, which is set to sizeof(struct
zfs_boot_args). This allows the loader to
safely access newer members of the struct, by first
checking that the offsetof() the member is
not greater than the sizeof() the loader's defi-
nition of the struct. This allows mismatched ver-
sions of the bootcode and loader to continue to
work together. When a new member is added to
the end of the struct, access to it is guarded by
this mechanism. Using this design pattern, a new
member was added to the zfs_boot_args
struct to pass the GELI passphrase from boot2 to
the loader. This too is carefully zeroed as soon as
the next boot phase starts.

Work then started on updating the FreeBSD
installer to create this configuration for users.
There are a number of limitations. The GELIBoot
system currently only works with GPT formatted
disks. MBR formatted disks are not supported
because of a similar restriction in the size of the
boot2 code. Originally it was not clear that the
ZFS on-disk format allowed a larger bootcode to
be installed. After discussion with Toomas Soome,
I learned that the ZFS disk label leaves 3.5
megabytes of space for boot code, so it will be

18 FreeBSD Journal

possible to expand the MBR boot2 code. This will
likely be required as ZFS grows additional fea-
tures anyway, so GELIBoot will most likely be
extended to include MBR support in FreeBSD
11.1. Currently the FreeBSD EFI boot loader does
not support GELI. Another developer, Eric
McCorkle, who wrote the original EFI ZFS sup-
port, is working on this, and it is also expected to
be included in FreeBSD 11.1. However, if you use
GPT and boot via the legacy/BIOS method, the
installer will create just a single fully encrypted
ZFS pool and boot from that. In all other cases,
the previous method of using a second plaintext
pool to store the loader and kernel is used.

The remaining limitation is also that only GELI
passphrases are supported. The GELI master key
is encrypted using a key derived by PKCS#5 v2
from the passphrase. GELI also supports using a
key file (or the combination of both a passphrase
and a key file); however, GELIBoot does not sup-
port key files. In the future, support for key files
stored on external media such as a USB device is
planned. With the UEFI version of GELIBoot, Eric
plans to support storing key material in the TPM.

You can read more about my adventures in
implementing GELIBoot in the proceedings of
AsiaBSDCon 2016, or download my paper here:
http://www.allanjude.com/bsd/AsiaBSDCon2016_
geliboot_pdf1a.pdf.

Automatic Boot Recovery
FreeBSD contains a toolkit called nanobsd that
has been used by many projects, including
FreeNAS and pfSense, to build appliances. It con-
tains a firmware-style upgrade feature, where the
system is set up with two partitions, and when
an upgrade is performed, the new system is
installed into the inactive partition, and a parti-
tion table flag is set. On the next boot, the parti-
tion containing the newer system image will be
booted, and the failed flag will be set on it. If it
boots successfully, the flags will be removed from
the partition. If booting fails, when the system is
power cycled, the boot loader will see the failed
flag and automatically revert to booting the origi-
nal image.

There is a desire to have a similar system for
ZFS, without requiring separate partitions. The
basic idea is to set a pool property, altbootfs, to
indicate a new boot environment to attempt to
boot. When the boot loader detects the presence
of this property, it will mark the partition as

failed, and boot from the alternate boot environ-
ment. If the system comes up properly, a startup
script will remove the failed flag and promote the
boot environment to being the default. If the sys-
tem does not boot correctly, when the next boot
is attempted, it will boot the default boot envi-
ronment, which contains the system from before
the upgrade was applied. This will protect appli-
ances and servers from requiring hands-on assis-
tance to recover from a failed upgrade.

ZFS RAID 10
The FreeBSD installer has supported creating mir-
rored ZFS pools since 10.1; however, if your sys-
tem contained a large number of disks and you
selected the mirror option, the installer would
create a single mirror containing all of the disks.
While this provides extremely good redundancy
with 8 or more drives, this is likely not the user’s
intent. In FreeBSD 11 the installer includes a
RAID-10 option, which creates a ZFS mirror con-
sisting of pairs of disks. An even number of disks
must be selected for this option to be available.
A system with 8 disks will now create a pool of 4
mirror sets each containing 2 disks. This is the
highest performance configuration, especially in
terms of IOPS. Mirror sets also provide the most
flexibility. Additional disks can be added in pairs,
rather than requiring an entire additional RAID-Z
vdev. In budget-constrained configurations, this
allows small numbers of disks to be purchased
when available space runs low. Mirror sets also
allow additional space to be gained by replacing
smaller disks with larger ones. Once both mem-
bers of a mirror have been individually replaced
and resilvered, the additional space is available.
With an 8-disk RAID-Z, all 8 disks would need to
be replaced before additional space became
available.

And So Much More
The rest of the FreeBSD community has not been
idle during this time either; a lot of great work
has been done recently. FreeBSD 11 will also
include:
• The ZFS ARC is now resizable at runtime,

allowing greater control over the amount of
memory used by ZFS

• Improved interaction between ZFS and the
VFS layer improves responsiveness under
memory pressure and allows ZFS to return
more memory to the system when needed

• ZFSd is now available; this daemon manages hot
spares and automatically reattaching disks that
are temporarily detached

• ZFS now supports the SHA512 and Skein check-
sum algorithms

• The in-kernel SHA2 implementation has been
replaced with a much more performant one

• bhyve now supports Windows Guests, and has a
VNC backend to provide video console access

• libxo allows a number of utilities in the base
system to output JSON, XML, or HTML instead
of only plaintext

• Ifconfig now supports multiple output formats,
including printing subnet masks in dotted-quad
and CIDR notation, and traditionalhex output

• More features are enabled by default, including
Netmap and IPSec

More to Come
While 11 is a major milestone, there is plenty more
to come. The 11.x branch features a new support
model, where each point release is supported for
three months after the next point release. This new
model will allow more frequent releases and greatly
lessen the burden on the Security and Ports teams
having to support 2-year-old releases. Many new fea-
tures will be available in 11.1, although for some of
the major changes you’ll have to wait for 12. Over
the next few months I hope to see a number of new

features land:
•Packaged base system
•GELI in the UEFI loader
•Support for more ZFS features in the

loader
•ZFS compressed ARC
•ZFS compressed send/recv
•ZFS scrub/resilver speed improvements
•Installer create larger EFI partitions
•Easier management of EFI partition and its contents
• Installer put swap partition before data partition

to allow data partition to be easily grown
• Installer optionally install a basic set of packages

(graphical environment)
• libucl (standardized configuration file format)

config files for many utilities and daemons in base
• libxo in more utilities
• librification of more utilities (ifconfig, netstat)

ALLAN JUDE is VP of Operations at
ScaleEngine Inc., a global HTTP and Video
Streaming CDN, where he makes extensive
use of ZFS on FreeBSD. He is also the host of
the video podcasts BSDNow.tv (with Kris
Moore) and TechSNAP.tv. He is a FreeBSD src
and doc committer, and was elected to the
FreeBSD Core team in the summer of 2016.
Allan is the coauthor of FreeBSD Mastery:
ZFS and FreeBSD Mastery: Advanced ZFS with
Michael W. Lucas.

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

