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One of the major obstacles preventing us from
experimenting with TCP was fear of the unknown.
Because TCP is complex and the code itself was non-
modular in its past form, it was difficult to segregate a
fix that wouldn't impact the rest of the code. However, it
was relatively easy to introduce subtle regressions.

THE TCP ALTERNATIVE STACK FRAMEWORK attempts to fix this prob-

lem by modularizing the stack so that anyone can come up with a new TCP
stack and have both (or more) stacks coexist on the same machine at the same
time and serving different connections. The code is modularized so different
TCP operations, like input or output processing, segment handling, timer pro-
cessing, and socket options parsing, are subdivided into different function
blocks and are made accessible with function pointers. Thus, a developer can
design an alternate stack with a new way of handling input or output process-
ing and still use the rest of the functionality from the default stack. One can select
a stack per connection using socket options which provide the ability to do real A/B
testing when experimenting with various TCP features.

The following sysctls can be used for configuration:
net.inet.tcp.functions available - List all available stacks
net.inet.tcp.functions default - Set/Get default stack

What follows is a short example of a server-side setting 'mytcp' as a stack to use on the listen
socket. Each new connection it accepts would get 'mytep’ as its TCP stack.
socklen t slen;
char *stack name="mytcp";
struct tcp function set fsn;
int error;

memset (&fsn, 0, sizeof(fsn));

strcpy(fsn.function set name, stack name);

slen = sizeof(fsn);

error = setsockopt(s, IPPROTO_ TCP, TCP_FUNCTION BLK, &fsn, slen);

if (error)

printf("Could not set TCP stack to %s, error:%d\n", func blk, errno);
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TCPPCAP—A Debugging Feature

At times, TCP problems surface in weird ways, and we want to have access to the last few packets or
TCP state transitions so that we can figure out what went wrong. This feature provides that by saving
the last configurable number of packets in the corresponding TCP control block. The number of pack-
ets can be specified on a global, i.e., per-system basis, or per-connection using a socket option.

A note of caution: Although this feature does a good job of keeping a cap on the maximum
amount of memory that can be allocated to it, the number should be chosen carefully, as saving pack-
ets consumes memory.

This feature can be enabled with the TCPPCAP option in the kernel configuration. Even then, the
feature is deactivated. When activated, the TCP control block has t _inpkts, which is the list of input
packets saved, and t_outpkts, which is the list of output packets saved.

The following sysctl can be used for configuration:
net.inet.tcp.tcp pcap packets - Enable feature and set number of packets to capture
per connection in each direction
net.inet.tcp.tcp pcap clusters referenced max - Maximum mbuf clusters allowed
to be referenced

The following sysctls can be used to monitor memory usage by this feature:
net.inet.tcp.tcp pcap clusters referenced cur - Total mbuf clusters referenced
net.inet.tcp.tcp pcap alloc reuse_ ext - Total reused mbufs with external storage
net.inet.tcp.tcp pcap alloc_reuse mbuf - Total reused mbufs with internal storage
net.inet.tcp.tcp pcap alloc_new mbuf - Total new mbufs allocated

Server-side TCP Fast Open (TFO)

TCP performs a three-way handshake (3-WHS: SYN, SYN-ACK, ACK) between client and server
before any actual data can be transferred on the connection. For short-lived connections, this can be a
significant part of the total time spent on the transaction, i.e., latency experienced by the client.

TCP Fast Open (TFO), introduced by rfc 7413, addresses this problem by allowing SYN and SYN-
ACK packets to carry data if the client has a valid security cookie with which the server can authenti-
cate the client.

FreeBSD now has server-side support for this feature. The main part of TFO is the security cookie.
The client first requests the cookie by sending SYN with a FAST OPEN option and an empty cookie
field. The server generates a cookie and sends it back with the FAST OPEN option of a SYN-ACK
packet. The client caches that cookie to use it in FAST OPEN connections to that same server. Once
the client has the cookie, it sends SYN with the data and the cached cookie in the FAST OPEN option
field. If the cookie is valid, the server acks both the cookie and the data and sends the data to the
application. If the cookie is not valid, the server drops the data and only acks the SYN. If the server
accepts the data provided in the SYN, it can send the response data before the 3-WHS finishes. The
client acks both the SYN and data if present. If not, it only acks the server’s SYN. The rest of the con-
nection proceeds as a regular TCP connection.

The client can make TFO connections until the cookie is valid and its validity is configurable on the
server side. Thus, if a client is making a lot of short-lived connections to the same server, this feature
can help a lot in reducing overall latency.

This feature can be enabled by adding 'options TCP RFC7413' to the kernel configuration.
How many multiple concurrent keys to use can be specified with 'options
TCP_RFC7413_MAX KEYS=<num-keys>'in the kernel configuration. Currently it defaults to 2
configuration sysctls:
net.inet.tcp.fastopen.enabled - Enable/Disable this feature
net.inet.tcp.fastopen.autokey - Automatic key renew timeout; defaults to 120secs
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net.inet.tcp.fastopen.acceptany - Accept any key client supplied cookie; disabled by
default

net.inet.tcp.fastopen.keylen - The key length in bytes
net.inet.tcp.fastopen.maxkeys - Max keys supported
net.inet.tcp.fastopen.numkeys - Total keys installed

Datacenter TCP

Datacenter TCP (DCTCP) is a congestion control mechanism to be used in data-
centers. It uses explicit congestion notification (ECN) to estimate the
extent/amount of congestion instead of just detecting that some conges-
tion has occurred.

Traditional congestion control mechanisms underperform inside dat-
acenters because the traffic is high throughput, low latency, and
bursty in nature. Because ECN can estimate the severity of conges-
tion, DCTCP uses that to reduce the congestion window accordingly,
which helps in using available bandwidth efficiently.

DCTCP is now included as a congestion control module which can
be the default congestion control for all connections or can be set per
connection using socket options. The current implementation can also
work in a one-sided fashion where only one side (sender or receiver) is
using DCTCP.

Use following sysctls to configure this feature:
net.inet.tcp.cc.dctcp.slowstart - Determines whether to reduce the
congestion window by half after the first slowstart.
net.inet.tcp.cc.dctep.shift g - Determines convergence time and bandwidth utilization.
The IETF Draft suggests keeping it at '4" which we follow in the implementation.
net.inet.tcp.cc.dctcp.alpha - Determines how aggressive you want DCTCP to be at the
cost of queueing delay at the beginning of the connection. The IETF Draft suggests being less aggres-
sive with value '1," but we decided to be more aggressive and kept the default at '0" in FreeBSD.

Packetization Layer Path MTU Discovery for Blackhole Detection

The maximum transmission unit (MTU) is the largest amount of data that can be sent in a frame. If a
device is in the path with outgoing interface MTU less than the size of the frame, and if the 'don't
fragment' (DF) bit is set, the frame is discarded and an ICMP message 'Fragmentation needed
and DF set'is sent back to the sender with the outgoing interface MTU size in it. Upon receiving
this message, the sender can adjust its MTU and resend the frame.

Sometimes these ICMP messages are blocked because of firewalls or some other mysterious rea-
sons, and packets are silently discarded without the server ever knowing about them. That is called a
PMTU blackhole. In such cases, being able to detect a blackhole without needing ICMP is really useful
and the Packetization Layer Path MTU Discovery (PLPMTUD) blackhole detection introduced by rfc
4821 does exactly that.

When sending a packet fails twice with retransmission timeout (RTO), it tries to detect whether the
connection is experiencing a blackhole along the path. It does this by reducing maximum segment
size (MSS) to a preconfigured value. And we continue reducing the MSS in the case of more succes-
sive failed sending attempts until we reach the minimum configured MSS value. If the packet can be
sent using a lower MSS, that means we, indeed, were experiencing a blackhole along the path. But if
we cannot send the packet, even with the smallest configured MSS value, it is not the blackhole, but
real congestion that is causing packet drops, and in that case, we restore the MSS to its original
value.

Another important part of this feature is the upward probing of the network with incrementally
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higher values of MSS on successful transfers. Yet, that is not currently implemented in FreeBSD, and
because of that, this feature is disabled by default.

In many congestion control mechanisms, congestion window growth depends on the size of MSS,
and therefore a connection in a blackhole may experience slower growth of a congestion window and
thus be slower in utilizing path capacity.

Use the following sysctls to configure this feature:
net.inet.tcp.pmtud blackhole detection - Enable/Disable
net.inet.tcp.pmtud blackhole mss - Lowered MSS for IPv4
net.inet.tcp.vépmtud blackhole mss - Lowered MSS for IPv6

Use the following sysctls to monitor this feature:

net.inet.tcp.pmtud blackhole activated - How many times we detected a blackhole and
activated MSS down-probing.

net.inet.tcp.pmtud blackhole activated min mss - How many times we detected a
blackhole and went down to minimum MSS configured during MSS down-probing.
net.inet.tcp.pmtud blackhole failed - How many times we detected a blackhole incorrectly

Short-lived TCP Connections Scalability Effort

The layered design of the networking stack and its implementation indicate complex locking and serial-
ization challenges. Each layer has to talk to the neighboring layers to stay in sync to accept, serve, and
tear down connections. Even within each layer, depending on its functionality, there has to be proper
synchronization to maintain consistency when many, many connections are sharing the same data
structures and memory resources.

Struct inpcb is the IP layer protocol control block structure which captures the network layer states
like host addresses and routing information for TCP, UDP, and the like.

Before this effort/change for short-lived connections, close to 80% of received packets were
processed holding exclusive write lock. This means that only one cpu core can work on receiving pack-
ets and the rest of the cores have to wait for the lock to be released. Now, a new INP_LIST lock has
been added that protects modifications to the global inpcb list. This allows INP_INFO_ RLOCK (a read
lock) in critical paths like input processing, and only occasionally needs INP_INFO WLOCK (a write
lock) when it is really needed, i.e., walking global inpcb list while being stable.

The maximum number of TCP connections (setup and teardown) per connection is increased from
60k/sec to 150k/sec.

Improved Protection Against Blind In-window SYN/RST
Spoofed Attack

If an attacker could somehow guess the valid window of sequence numbers and forge a SYN or a RST
packet, FreeBSD used to drop the connection without looking at whether it's the exact packet it
expects at that point in time or not.

Now with the enhancements proposed by rfc 5961, if the incoming RST is the exact sequence num-
ber we are expecting, drop the connections, and if it's not that, but within the window, send a chal-
lenge ACK. For incoming SYN, if the connection is in a synchronized state, send a challenge ACK.

Sending a challenge ACK makes a genuine sender generate a RST that matches the exact sequence
number that we expect. Basically, with this mechanism in place, it's very hard for the attacker to spoof
a valid SYN/RST that can cause us to drop the connection. Some middleboxes or broken TCP stacks
may still respond to the challenge ACK with a RST packet that has a SEQ number that we do not
expect. In that case, because of this feature, we may see a lot of spurious challenge ACK and RSTs
going back and forth. Challenge ACKs should be throttled to alleviate this problem so that we only
send a limited amount of challenge ACKs per time period. For example, send only 10 challenge ACKs
in a 5-second period. The time and amount of acks allowed should both be tunables. This is not yet
implemented in FreeBSD.
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This feature is enabled by default on FreeBSD. It can be disabled by setting
net.inet.tcp.insecure rst and net.inet.tcp.insecure synto 'l"

TCPDEBUG Like Information with Dtrace Trace Points

TCP has a debugging functionality that can print traces of connection state changes and other use-
ful events like sending and receiving packets. But to enable this feature, the kernel needs to be built
with the TCPDEBUG option in the kernel configuration file and the associated socket needs to be
marked with the SO_DEBUG option—which means recompiling the application.

Now, with Dtrace (a dynamic tracing framework) probe points enabling the same functionality, it
can be used without needing to recompile the kernel or userland application. $src/share/
dtrace/tcpdebug is a sample script and a nice example of how to use this feature.
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