SEE
TEXT
ONLY

FREDERICK P. BROOKS, JR

OXKreview., ...

The Mythical Man-Month and its Relevance to the FreeBSD Project

The Mythical Man-Month
...................................... By Frederick P. Brooks Jr.

Publisher................ Addison-Wesley Professional;

Anniversary edition (1995)
Print List Price.......cccoevvveeeeeeeeeeeeceeeveeeiene $42.99
Digital List Price........cceeverveereerecrecreereereenee. $34.99
ISBN-10.....ccoeeeeeeeeeeeeeee e, 0201835959
ISBN-13...c e 978-020185953
Pages........ccoeeeimmiiiei e 336

on software development. It is structured as

a series of essays that use anecdotal evi-
dence as the basis for practical advice. Rather
than dealing with specific technical details, these
essays focus on how people develop software.

| first read TMM (as it is otherwise known) less
than a year removed from college graduation on
the recommendation of FreeBSD developers.
While some aspects of programming practice have
changed since TMM was originally written in 1975
(such as widespread use of higher-level program-
ming languages and interactive debugging), many
of the concerns the author, Fred Brooks, notes are
still relevant today.

One of the first topics Brooks broaches is distin-
guishing a simple computer program from a prod-
uct. A developer who bangs out a program to
accomplish a task for himself or herself has writ-
ten a computer program. A product, on the other
hand, must be usable by other people. It must
handle arbitrary inputs (including erroneous
inputs) correctly. It must have documentation that
explains both how to use the program and which

The Mythical Man-Month is a classic work

38 | FreeBSD Journal

tasks a program is suitable (or not suitable) for.
Developing a product requires far more effort than
the time to implement the initial computer pro-
gram. In FreeBSD, programs should have a manual
page at a minimum. However, supplemental docu-
mentation in the Handbook is often required (and
not always present).

Similarly, designing a computer program to be
a part of a computer system requires significant
work. Programs belonging to a system should pro-
vide consistent interfaces to users. They should
also provide consistent methods for cooperation.
One of the ways UNIX-like systems achieve this is
through the use of pipes to join the input and
output streams of processes. However, there are
several other ways to achieve consistency, such as
reusing the same option letters for common com-
mand line flags or using consistent language in
manual pages.

Chapter 2 discusses the scheduling of software
projects. In particular, it seeks to destroy the
notion that adding developers to a software proj-
ect increases productivity (and reduces schedule
length) linearly. Instead, Brooks highlights the
communication overhead imposed when adding
developers to a project as well as the additional
time required for training. Brooks also notes that
many software projects contain a critical path of
tasks that must be completed in sequence rather
than in parallel. These hard truths are used to
warn against overly optimistic responses to sched-
ule slippage, and in particular, the knee-jerk reac-
tion of adding additional developers to a software
project that is behind schedule.

FreeBSD releases do not have a combination of
a hard deadline along with a required set of fea-

tures in quite the same way Brooks's examples
imagine. However, several of Brooks's observations
are still applicable. Even with the ability to drop
features and focus on just shipping a release on a
given date, FreeBSD releases (especially the X.0
releases on new branches) are often delayed.
These delays usually stem from critical path tasks
such as waiting for a pending security advisory
scheduled for release near the time of the release.
FreeBSD also contains a large developer base,
which results in a large portion of time spent on
communication.

Chapter 3 proposes a model of organizing
developers into teams similar to the organization
of teams used for medical surgeries. Each team
consists of a single “surgeon” who is tasked with
writing the code for the end product as well as
additional team members to assist the surgeon.
FreeBSD developers are not generally organized in
teams as proposed by Brooks. However, Brooks's
model does highlight tasks that are important to
development beyond simply writing code. Two of
the team members he calls for are dedicated to
tools and testing.

The FreeBSD community has expended a signifi-
cant level of effort on improving the tools avail-
able on FreeBSD in the past decade. These include
adopting more modern replacements for toolchain
components such as Clang, as well as entirely new
tools such as DTrace. This work continues with
improvements to debuggers and performance
analysis utilities.

FreeBSD developers have also increased the
testing coverage. For several years, FreeBSD’s
source tree included a hodgepodge of tests that
were not run regularly. Some tests used common
frameworks, but many other tests were stand-
alone. Through the work of several developers,
FreeBSD adopted the kyua testing framework and
first shipped a set of kyua-based tests in 10.1-
RELEASE. Many existing tests from NetBSD were
imported as part of the process, and existing tests
were converted to the new framework. These
tests can now be easily run as automated jobs.
There is still a lot of work to do on this front, not
only with adding tests to fill in gaps in existing test
suites, but new classes of tests such as tests of the
installer.

Chapter 4 highlights the importance of concep-
tual integrity and offers a plan for achieving it in
large systems. Brooks asserts that “conceptual
integrity is the most important consideration in
system design.” He states that the only way to
achieve this is to limit the number of minds
involved in the design. Brooks proposes splitting
architecture from implementation. This concen-
trates the design in the minds of the architects

while spreading the workload of implementation
across a larger pool of developers. FreeBSD does
not place a sharp distinction between these roles
and does not have any formal, system-wide archi-
tects. Informally, FreeBSD developers do seek
review from peers, and there are individuals whose
review is sought for changes to specific portions of
the system. In some cases, these individuals are
de-facto architects for those portions of the sys-
tem, but not formally named. FreeBSD has
attempted to make this process more formal in
the past, but these attempts have not succeeded.

The Second-System Effect is the topic of
Chapter 5. Here, Brooks documents developers’
tendencies to pare down features in the first ver-
sion of a system only to swing to the opposite
extreme in the second system. Having successfully
completed the initial version, the developer then
proceeds to add every conceivable feature to ver-
sion 2.0. Brooks states this system “is the most
dangerous system a man ever designs.” The result
is a bloated system with poor conceptual integrity.
FreeBSD is not a perfect system and certainly has
had portions of the system that have suffered
from this tendency. Our developers are continually
learning from each other as well as from our own
past mistakes. Sometimes our peer review permits
us to fix mistakes sooner rather than later, but not
always. However, FreeBSD's developer community
provides a place where developers can be men-
tored and warned about trends such as the
Second-System Effect.

Chapters 6 and 7 highlight the importance of
effective communication and organization as
requirements for effective development involving a
group of individuals. FreeBSD developers and com-
munity members communicate over various ven-
ues including email, web forums, and real-time
chat such as IRC. However, our community also
realizes the value of in-person communications
and places a premium on “face time” at confer-
ences, developer summits, and user group meet-
ings. The community actively participates in these
meetings not just as attendees, but as organizers,
speakers, and volunteers. Organization remains a
challenge for FreeBSD. The FreeBSD Project’s for-
mal membership is very developer-heavy, but is in
need of a variety of skill sets apart from pure cod-
ing. This is not to say that the Project is completely
disorganized, but there are certainly gaps in the
coverage of many of the non-coding tasks the
Project requires for maximum effectiveness.

Estimating the time and resources needed for
systems projects is the subject of Chapter 8.
Brooks cites results from various studies analyzing
some of the factors that affect scheduling of sys-
tems projects. One of the first studies highlights

Nov/Dec 2016

39

40

the fact that a significant portion of program-
mers’ working days are lost to factors such as
meetings, working on tasks for other projects
such as a high-priority bugfix, or hardware fail-
ures. Other studies note that the lines of code
produced over time vary with the complexity of
the program. Of the projects surveyed, operat-
ing systems were the most complex (and thus
the slowest to develop).

Chapter 9 deals with managing memory allo-
cation between portions of a large program.
From a technical standpoint, much of this chap-
ter has been made obsolete by virtual memory.
However, the chapter still contains a few
nuggets. First, Brooks relates an anecdote from
the OS/360 development that resulted in the sys-
tem performing very poorly. Each module was
assigned a size constraint and the developers of
each module resulted to workarounds such as
overlays and “borrowing” space from neighbor-
ing modules without considering the effect on
the system at large. While each module func-
tioned in isolation within its assigned space, the
system as a whole suffered from excessive disk

Just as it is important to plan for change
in the design of software, it is also impor-
tant to plan for design in the organization
building the software. For FreeBSD, this
means building and maintaining a com-
munity, not just source code.

I/0 to satisfy overlay requests. Among several les-
sons from this story is the point that one must
keep system-wide effects in mind and not focus
exclusively on one module. A second point made
in this chapter is the importance of data repre-
sentation on performance. The data representa-
tion often drives the algorithms constraining the
range of performance. In those cases, large per-
formance changes will come through altering the
data representation rather than optimizing the
existing code flow.

In Chapter 10, Brooks discusses the impor-
tance of formal documents and their use in set-
ting down design. In particular, deriving specifi-
cations requires one to consider a host of design
decisions that would otherwise not be realized
until deep in the bowels of a coding session.
This is certainly an area where the FreeBSD
Project is not very strong. As an open-source
project, FreeBSD's developers are not handed a
set of specifications from external customers to
build a design against. In many cases, FreeBSD’s
developers are themselves FreeBSD consumers

FreeBSD Journal

and apply their own design requirements to
FreeBSD. In addition, the Project actively seeks
feedback from our customers to determine their
requirements. While we are not always able to
satisfy every requirement, we do use these to
set Project direction. Vendor summits are one of
the tools the Project uses to engage with our
customers. These are often held in conjunction
with an existing conference or developer sum-
mit. If you are a FreeBSD customer looking to
engage with the Project, please contact the
author or another FreeBSD developer. We want
to hear from you.

Chapter 11 focuses on change. Requirements
of a software product change over time as does
the hardware software runs on. Brooks encour-
ages developers to embrace change and plan
for it rather than fighting against it. For new
software projects (or even new subsystems), one
often needs to build an initial prototype to bet-
ter understand the problem being solved. Just as
deriving specifications forces consideration of
several design decisions, implementing a proto-
type also uncovers a host of unforeseen issues.
Trouble arises when one assumes that this initial
version must ship as the final product rather
than having the freedom to re-architect the
design of the actual product. Just as it is impor-
tant to plan for change in the design of soft-
ware, it is also important to plan for design in
the organization building the software. For
FreeBSD, this means building and maintaining a
community, not just source code. Over its life-
time, the FreeBSD Project has benefited from
the contributions of many individuals. Often
individuals move on to other interests or tasks
after working on FreeBSD for a period of time.
FreeBSD has survived these fluctuations in our
community and has continued to grow.
However, we must continue to actively welcome
and recruit new individuals to our community.

The importance of tools is the subject of
Chapter 12. While the tools-smith from Chapter
3 is mentioned, this chapter focuses on other
topics than programming tools. In particular,
Brooks discusses the trade-offs of sharing access
to new hardware among multiple developers,
the importance of simulators relative to actual
hardware, and the benefits of interactive debug-
ging. Interactive debugging is something that
developers now take for granted, but the other
two topics remain prescient today. Bringing up
FreeBSD on the arm64 platform has encoun-
tered constraints with target machine schedul-
ing due to the limited number of machines
available. Simulators such as QEMU also permit
developers to test FreeBSD on a broader range

of platforms from the comfort of their desktops.

Brooks next turns to system debugging in
Chapter 13. The chapter opens with an emphasis
on architecture and design. Skimping on the plan-
ning and design stages sows the seeds of an
unstable and buggy system. Brooks favors a top-
down design approach using iterative refinement
to bring detail to the design. Much of the chapter
warns against various shortcuts during system test
(now referred to as integration testing). First, test
and debug individual components in isolation
rather than attempt to test multiple components
together. The first approach does require more
“scaffolding,” but in the latter approach, bugs in
components can interact in surprising ways result-
ing in breakage that is much harder to debug. In
some cases, multiple bugs across components
may cancel out each other in a larger test, giving
a false sense of correctness. Second, don’t skimp
on the extra code and tools that are needed for
testing, but not in the final product. These enable
more detailed component testing which saves
time and frustration later in integration testing.
Third, maintain a standard copy of the current
system that new and in-progress components are
tested against. Changes to this system should be
rolled out periodically in a schedule that provides
periods of stability for in-progress components to
be tested against. Finally, new components should
be added to the system one at a time, and the
new system should run a full complement of
regression tests as each component is added.

While Chapter 8 covered the topic of planning
and estimating for a software project, Chapter 14
focuses on managing a project once it is in
progress. Brooks’s first recommendation is to have
a schedule that contains concrete milestones.
Vague milestones result in ambiguous communi-
cation between layers of management (or
between managers and developers). Brooks also
warns against micromanaging. When managers
jump in to correct issues the managees are capa-
ble of solving, the managees resort to hiding
reports of issues as a means of self-defense. To
foster clear communication, a manager must be
willing to accept bad news without immediately
barking orders.

Chapter 15 addresses the subject of program
documentation. Brooks begins by noting three
levels of documentation required for a program:
how to use a program, how to test a program,
and how to modify a program. Brooks states that
one of the root problems at the time of writing
was that documentation was kept separate from
source and inevitably became stale. He proposes
self-documenting source code as the most viable

solution to this problem. Self-documenting source
is now widely practiced, and in particular, the use
of high-level languages has made this more rea-
sonable. In-source documentation systems such as
Javadoc and Doxygen have been used by many
software projects to store documentation along-
side the source that can be easily translated into a
more human-readable format. While certain por-
tions of FreeBSD’s kernel source do use Doxygen
comments, most of FreeBSD’s documentation for
the first two levels is stored separately from the
source. Some documents are not well suited to
storing in source, but API descriptions may be
better served by a system like Doxygen rather
than stand-alone manual pages.

One of the documentation topics Brooks men-
tioned while describing the last level of documen-
tation was to explain “why"” design decisions
were made. While these decisions are sometimes
discussed in comments in the source code, these
decisions are often explained in the source code
repository logs of modern software projects.
FreeBSD (and BSD) have a long history of using
source code control, and the FreeBSD Project cul-
ture expects and encourages thoughtful log mes-
sages that explain the “why"” of changes, not just
the “what.”

The 20th-anniversary edition of TMM includes
an essay titled “No Silver Bullet” as Chapter 16.
The essay was originally published in 1987 and
discusses software productivity. In particular,
Brooks asserts that in the following decade
(1987-1996), no “silver bullet” would arise to
improve the productivity of software developers
by an order of magnitude. Brooks begins by divid-
ing the difficulties of software development into
two classes: essence and accidents. The essence
of software is its abstract design. It includes the
representation of data and algorithms used.
Accidents deal with difficulties in expressing this
abstract design. These can include the limitations
of hardware and the languages and forms used to
express an idea.

Brooks claims that the three large steps in
improving software productivity prior to 1987 all
attached accidental difficulties. High-level lan-
guages permit programmers to more concisely
express concepts while deferring many of the
mundane details to the compiler. Time-sharing
systems facilitate quick turn-around time during
development, allowing developers to sustain con-
centration for long periods of time. Unified pro-
gramming environments provide a standard way
to connect existing programs together that can be
used to solve larger tasks, such as using an I/O
pipeline in UNIX.

Nov/Dec 2016

41

The essence of software development remains
hard. Software is complex. Brooks notes that in
many other objects people create, repeated ele-
ments are common, but in software, a repeated
element is consolidated into a subroutine. Newer
versions of software projects are not formed
solely by duplicating existing modules. Instead,
they contain entirely new components that must
interact with the existing modules. At the same
time, software is invisible and its structure defies
detailed visualizations. When visualizations are
used, they are forced to constrain the informa-
tion, by focusing on control-flow rather than
data-flow, for example.

Brooks asserts that difficulties arising from this
essence are inherent in software. He did not see
any techniques proposed or in practice in 1987
that would attack these difficulties in a substan-
tial way over the ensuing decade.

In Chapter 17 Brooks responds to some of the
criticisms of “No Silver Bullet” and critiques addi-
tional silver bullet candidates nine years after the
publication of the original paper.

To encourage more vigorous debate of the
various propositions in the original TMM,
Chapter 18 includes a bulleted list.

Finally, in Chapter 19 Brooks revisits the con-

tent of the first 15 chapters 20 years after they
were first written. In some ways, this is the most
interesting chapter of the book. Brooks notes
topics made obsolete by technological advances
while affirming the propositions he believes are
still valid. Certainly the power of The Mythical
Man-Month stems from its continued relevance
decades after it was first written. In part, this is
due to the essence of software described in “No
Silver Bullet.” Technological advances have not
altered the fundamental construct of software.
Secondly, TMM is largely about people and the
interactions of people who work with software.
While new technology does affect our lifestyle
and the "accidents” of our task, people are still
people.®

JOHN BALDWIN (jhb@freebsd.org) joined
the FreeBSD Project as a committer in
1999. He has worked in several areas of the
system including SMP infrastructure, the
network stack, virtual memory, and device
driver support. John has served on the
Core and Release Engineering teams and
organizes an annual FreeBSD developer
summit each spring.

—

FreeBS

| FreeBSD”“aﬁL

-DID YOU MISS

e Nov/Dec 2015 / Olivier Cochard-Labbé, The BSD Router Project

‘ TMOURI\IAL

1 ©eBSPouinii

9 Ji

® Jan/Feb 2016 / Peter Holm, Using Fuzzy Testing to Build Industrial-
Strength Systems e March/April 2016 / Brooks Davis, Cheri

e May/June 2016 / Andy Waafa, ARMv8 e July/Aug 2016 / Chris Johns et al,

FreeBSD and RTEMS e July/Aug 2016 / Michael Lucas, Tuning ZFS

Get caught up today

Order Back Issues @ www.freebsdfoundation.org/journal

FreeBSD Journal

