
R ST

4 FreeBSD Journal

hen a colleague of mine first enthused to me
about Rust, I was skeptical. Back in the day, I’d cut
my programming teeth developing software for
safety-critical systems, and I’d learned the hard way
that programming languages are frequently less
sane than they first appear. Take C. Despite a con-
siderable standardization effort, the C specification
remains riddled with unspecified, undefined, and
implementation-defined behaviors [2]. And even in
2016, researchers continue to explore the differ-
ences between the C ISO standard and the de facto
usage [4]. While not all software engineers need be
concerned with the seemingly esoteric issues of
what happens when a bit field is declared with a
type other than int, signed int or unsigned
int (it’s undefined [2]), I’d worked too long with
safety-critical and security systems to switch off this
retentive part of my brain. And so, somewhat dis-
missively, I mentally parked Rust along with Go,
Haskell, and all the other technologies that sound
cool, but I could never foresee actually using. Then
early this year, I had the opportunity to revisit Rust,
and I found I’d been a bit hasty.

I had been developing a prototype for a distrib-
uted tracing framework built on top of DTrace. The
prototype, written in C, acted as a DTrace consumer
(interfacing with libdtrace) and sent DTrace
records upstream for further processing (aggrega-
tion, reordering, and so on) using Apache Kafka.
For a prototype this worked fine, but as the work
progressed, I needed to rapidly explore the design

S E E
T E X T
O N L Y

I t ’ s B e t t e r t o

T h a n W e a r O u t

by

Gr

ae
me

Je

nk
in

so
n

Nov/Dec 2016 5

space. This task favored adopting higher-level lan-
guage, but which one to choose? Like all good
engineers, I started to list out my requirements. I
needed a language that emphasized programmer
productivity. It needed to easily and efficiently
interface with libraries written in C (such as lib-
dtrace). I also needed easy deployment, there-
fore languages requiring a heavy runtime (and
Java specifically) were complete nonstarters. Good
support for concurrency and, ideally, prevention of
data races would be nice. And finally, with my
security hat on, I didn’t want to embarrass myself
by introducing a bucket-load of exploitable vulner-
abilities. I thought back to that earlier conversa-
tion with my colleague, aren’t these requirements
exactly what Rust is designed for? And so I decid-
ed to give Rust a whirl, and I’m glad that I did,
because I really liked what I found. So what’s Rust
all about?

Rust’s vision is simple—to provide a safe alter-
native to C++ that makes system programmers
more productive, mission-critical software less
prone to bugs, and parallel algorithms more
tractable. Rust’s main benefits are [5]:

• Zero-cost abstractions,
• guaranteed memory safety (without
garbage collection),

• threads without data races,
• type inference,
• minimal runtime, and
• efficient C bindings.

The Rust language has a number of compre-
hensive tutorials, notably the “Rust Book” [5].
Therefore, rather than retreading that ground, I
will instead highlight the features of Rust that I
find particularly compelling. Along the way, I’ll dis-
cuss the features of Rust that are most difficult to
master. And finally, I’ll show how to get started
programming in Rust on FreeBSD.

Fighting the Borrow Checker
Before diving in headfirst and firing up your
favorite text editor (vim, obviously), it is important
to understand Rust’s most significant cost, its
steep learning curve. On that learning curve,
nothing is more frustrating than repeatedly invok-
ing the wrath of the “borrow checker” (the
notional enforcer of Rust’s ownership system).
Ownership is one of Rust’s most compelling fea-
tures, and it provides the foundations on which

Rust’s guarantees of memory safety are built. In
Rust, a variable binding (the binding of a value to
a name) has ownership of the value it is bound to.
Ownership is mutually exclusive; that is, a resource
must have a single owner. It is the borrow check-
er’s job to enforce this invariant, which it does by
failing early (at compile time) and loudly.

In the following example, taken from the “Rust
Book” (The Rust Programming Language, 2016),
v bound to the vector vec![1, 2, 3]
(vec![1, 2, 3] is a Rust macro creating a con-
tiguous, growable array containing the values 1, 2
and 3). The function foo() is the “owning
scope” for variable binding v. When v comes into
scope, a new vector is allocated on the stack and
its elements on the heap; when the scope ends,
v’s memory (both the components on the stack
and on the heap) is automatically freed. Yay,
memory safety without garbage collection.

fn foo() {
let v = vec![1, 2, 3];

}

Ownership can be transferred through an
assignment let x = y (move semantics). But
remember ownership is mutually exclusive, so in
the example below, when the variable v is refer-
enced (in the println macro) after the transfer
of ownership to v2, the borrow checker cries foul
(error: use of moved value: `v`).

let v = vec![1, 2, 3];
let v2 = v;

println!("v[0] is: {}", v[0]);

In the example below, calling the function
bar() passing the vector v as an argument
transfers the ownership of v. When the owning
scope (the function bar) ends, v’s memory is auto-
matically freed (as before). Ownership of v can be
returned to the caller by simply returning v from
bar. This approach would get tedious pretty
quickly, and so Rust allows borrowing of a refer-
ence (that is, “borrowing” the ownership of the
variable binding). A borrowed binding does not
deallocate the resource when the binding goes
out of scope. This means that after the call to
bar(), we can use our original bindings once
again (see following page):

6 FreeBSD Journal

fn bar(v: &Vec<i32>) {
// do something useful v here

}

let v = vec![1, 2, 3];

bar(&v);

println!("v[0] is: {}", v[0]);

Immutability by Default
By default, Rust variable bindings are immutable.
Having spent many an hour typing const *
const and final (in C and Java, respectively)
this feature alone fills me with joy; and what is
more, unlike const, it actually provides
immutability. Variable bindings can be specified as
mutable using the mut keyword: let mut x =
10 (also note the sensible use of type inference).
Like variable bindings, references are immutable
by default and can be made mutable by the addi-
tion of the mut keyword (&mut T). Shared muta-
ble state causes data races. Rust prevents shared
mutable state by enforcing that there is either:
• one or more references (&T) to a resource or
• exactly one mutable reference (&mut T).

Choosing Your Guarantees
Rust’s philosophy is to provide the programmer
with control over guarantees and costs. Rust’s rule
that there can be one or more immutable refer-
ences or exactly one mutable reference is enforced
at compile time. However, in keeping with the
overall philosophy, various different trade-offs
between runtime and compile time enforcement
are supported. A reference counted pointer
(Rc<T>) allows multiple “owning” pointers to the
same (immutable) data; the data is dropped and
memory freed only when all the referenced count-
er pointers are out of scope. This is useful when
read-only data is shared and it is non-deterministic
to when all consumers have finished accessing the
data. A reference counted pointer gives a different
guarantee (that memory is freed when all owned
pointers go out of scope) than the compile time
enforced guarantees of the ownership system.
However, this comes with additional costs (memo-
ry and computation to maintain the reference
count). Similarly, mutable state can be shared
(using a Cell<T> type); this again brings differ-
ent trade-offs for guarantees and costs.

Lifetimes
There is one final and rather subtle issue with
ownership. Variable bindings exist within their
owned scope, and borrowed references to these
bindings also exist within their own separate
scope. When variable bindings go out of scope,
the ownership is relinquished and the memory is
automatically freed. So what would happen if a
variable binding went out of scope while a bor-
rowed reference was still in use? In summary, real-
ly bad things invalidate Rust’s guarantees of mem-
ory safety. Therefore, this can’t be allowed to hap-
pen. Lifetimes are Rust’s mechanism to prevent
borrowed references from outliving the original
resource.

In Rust, every reference has an associated life-
time. However, lifetimes can often be elided. The
example below shows equivalent syntax with the
lifetime ('a) of the reference s elided and made
explicit:

fn print(s: &str); // elided
fn print<'a>(s: &'a str); // expanded

Global variables are likely to be the novice Rust
programmer’s first interaction with lifetimes.
Global variables are specified with Rust’s special
static lifetime as follows static N: i32 = 5;.
A static lifetime specifies that the variable binding
has the lifetime of the entire program (note that
string literals possess the type &’static str,
and therefore live for the entire life of the pro-
gram). If I were to hazard a guess at where life-
times next rear their heads, it would be storing a
reference in a struct. In Rust, a struct is used
to create complex (composite) datatypes. When
Rust structs contain references (that is, they bor-
row ownership), it is important to ensure that any
references to the struct do not outlive any ref-
erences that the struct possesses. Therefore, a
Rust struct’s lifetime must be equal to or short-
er than that of any references it contains.

Efficient Inheritance
In contrast to C++ and Java’s heavyweight
approach to inheritance, Rust takes a muted
approach, and, in fact, the word inheritance is
studiously avoided. With traditional inheritance
gone, AWOL classes are no longer needed.
Having been freed from confines of classes, meth-
ods can be defined anywhere and types can have

Nov/Dec 2016 7

an arbitrary collection of methods. As in Go,
inheritance in Rust has been boiled down to sim-
ply sharing a collection of method signatures (this
approach is sometimes referred to as objects
without classes). Rust Traits group together a col-
lection of methods signatures—a Rust type can
implement an arbitrary set of Traits (thus Traits
are similar to mixins).

Fighting the Borrow Checker
Redux
What makes Rust’s ownership system so tricky to
master? Ownership is not a complexity introduced
by the Rust language; it is an intrinsic complexity
of programming regardless of the language being
used. Languages that fail to address ownership
fail at runtime (with data races and so on). In con-
trast, Rust makes issues of ownership explicit,
allowing the language to fail early and loudly at
compile time. Rust’s borrow
checker is like that friend
you couldn’t quite get on
with on first meeting. Over
time, and once they’ve
helped you out multiple
times, you realize that
they’ve actually got some
pretty great qualities and
you’re glad to have made
their acquaintance.

Foreign Function
Interface (FFI)
Another of Rust’s features
that particularly appealed to
me is Rust’s support for effi-
cient C bindings (calling C code from Rust incurs
no additional overhead). Efficient C bindings sup-
port incremental rewriting of software, allowing
programmers to leverage the large quantities of C
code that are not going away anytime soon.
External functions fall beyond the protections of
Rust and thus are always assumed to be unsafe (it
is important to note that there are many behav-
iors, such as deadlocks and integer overflows, that
are undesirable, but not explicitly unsafe in the
Rust sense). In Rust, unsafe actions must be
placed inside an unsafe block. Inside the
unsafe block, Rust’s wilder crazier cousin
“Unsafe Rust” rules. “Unsafe Rust” is allowed to

break limited sets of Rust’s normal rules, the most
important being that it is allowed to call external
functions.

In practice, calling C functions from Rust isn’t
always quite so straightforward as tutorials make
out. Consider calling the function
dtrace_open() (from libdtrace). The C pro-
totype for dtrace_open() is shown below:

To call dtrace_open() from Rust, we first
specify the dtrace_open()’s signature in an
extern block (extern “C” indicates the call uses
the platform’s C ABI). We can then call that func-
tion directly from an unsafe block, as shown:

But there is one significant problem: where is the
type dtrace_hdl_t defined? While
dtrace_hdl_t can be specified by hand, it con-
tains many, many fields, which in turn use yet more
new types that must be defined. Specifying all this
by hand would be extremely tedious and error
prone. Fortunately, there is a solution. C bindings
can be generated automatically using Rust’s bind-
gen crate (cargo install bindgen).
Unfortunately, bindgen is not a very mature tool.
And, as a result, manually tweaking of its outputs is
often required (usually adding or removing mutabili-
ty). With SWIG support for Rust not looking immi-
nent, better native tooling for generating Rust bind-
ings is desperately needed.

dtrace_hdl_t *
dtrace_open(int version, int flags, int *errp)
{

….
}

extern crate libc;

...

extern “C” {
fn dtrace_open(arg1: ::std::os::raw::c_int,

arg2: ::std::os::raw::c_int,
arg3: *mut ::std::os::raw::c_int) -> *mut dtrace_hdl_t;

}

fn main() {
let dtrace_version = 3;
let flags = 0;
Let mut err = libc::c_int = 0;
let handle = unsafe {

dtrace_open(dtrace_version , flags, &mut err)
};

}

8 FreeBSD Journal

Package Management
The final, and in many ways most important fea-
ture that attracted me to Rust was its support for
modern application package management. Rust
provides a flexible system of crates and modules for
organizing and partitioning software and managing
visibility. Rust crates are equivalent to a library or
package in other languages, and Rust modules par-
tition the code within the crate. A Rust program
typically consists of a single executable crate which
optionally has dependencies on one or more library
crates. Reusable, community-developed library
crates are hosted at crates.io, the central package
repository for cargo, Rust’s package management
tool (crates.io is broadly equivalent to Python’s PyPI).
Rust’s cargo tool fetches proj-
ect build dependencies from
crates.io and manages building
of the software. Yeah, I know, does the world really
need yet another mechanism for packaging soft-
ware, resolving dependencies, and building soft-
ware? Well perhaps not, but cargo actually works
really well (though for those with experience with
Maven, the bar hasn’t been set that high).

Getting Started on FreeBSD
Rust’s platform support is divided into three tiers,
each providing a different set of guarantees.
FreeBSD for x86_64 is currently a Tier 2 platform.
That is, it is guaranteed to build, but not to actu-
ally work. Despite the lack of a guarantee, in
practice, things generally seem to work pretty
well. Tier 2 platforms provide official releases of
the Rust compiler rustc and standard library std
(pkg install rust), and package manager
cargo (pkg install cargo). FreeBSD’s binary
Rust package is currently (at the time of writing)
at v1.12 with v1.13 being the latest stable
release. Once installed, Rust can be updated to
the latest version by executing the rustup script:

32-bit FreeBSD sits in Rust’s lowly third tier where,
without guarantees about either building or work-
ing, things are pretty unstable. For example, Rust
1.13 recently shipped in spite of a serious code gen-
eration bug on ARM platforms using hardware float-
ing point. Here be dragons, so beware!

curl -sSf https://static.rust-lang.org/rustup.sh | sh

I S I L O N The industry leader in Scale-Out Network Attached Storage (NAS)

With offices around the world,
we likely have a job for you!
Please visit our website at
http://www.emc.com/careers
or send direct inquiries to
karl.augustine@dell.com.

We’re Hiring!We’re Hiring!

Isilon is deeply invested in advancing
FreeBSD performance and scalability.
We are looking to hire and develop
FreeBSD committers for kernel prod-
uct development and to improve the
Open Source Community.

Nov/Dec 2016 9

Where Are We Now?
Rust started life in 2009 as a personal project by
Mozilla employee Graydon Hoare. In subsequent
years, Rust has transitioned to a Mozilla-sponsored
community project with over 1,200 contributors.
Since the 1.0 release, delivered in June 2015, Rust
has been used in a number of real-world deploy-
ments. June 2016 saw another major milestone on
the road to maturity, with Mozilla shipping Rust
code for the Servo rendering engine in Firefox 48.
So people are using Rust, but does it really deliv-

er on its vision of providing a safe alternative to
C++? I think the answer is pretty much yes, though
the differences aren’t all that huge. For example, in
C++, a unique_ptr owns and manages an object
and disposes of that object when the unique_ptr
goes out of scope. Furthermore, ownership can be
transferred using std::move; and as a bonus,
there is type inference using the auto keyword. But
in spite of these similarities, smart pointers don’t
give everything that Rust’s ownership system does.
In the example below [3], accessing orig after the
move results in a segmentation fault at runtime—a
morally equivalent example in Rust would fail to
compile. Failing early is a good thing. That a careful
and skilled C++ programmer wouldn’t make such
mistakes is somewhat of a circular argument,
because if such mistakes weren’t widespread, lan-

guages attempting to prevent them wouldn’t exist
in the first place. C++ also lacks a module system
and has a number of pretty ropey features like
header files and textual inclusion. These are all wins
for Rust.
How does Rust compare with C++ on perform-

ance? Well, control studies comparing the perform-
ance of idiomatic C++ and Rust are hard to find. A
comparison between Firefox’s Servo and Gecko ren-
dering engines (written in Rust and C++, respectively)
reported that the Servo engine was in the order of
twice as fast [1]. While these figures should be taken
with a pinch of salt, the consensus opinion is that
Rust is at least comparable in terms of performance
to C++. One of the reasons for this is that Rust fea-
tures like genuine immutability allow optimizations
that can’t be made in C++. And Rust’s semantics
bring significant potential for further optimizations.
Despite the advances made in deploying Rust in

production environments, problems remain. The
Rust ABI is unstable; and as with the Glasgow
Haskell compiler, a stable ABI may never happen,
almost certainly not anytime soon. This problem
most impacts Rust native, shared libraries, as with-
out a stable ABI, they are incompatible across major
version changes. ABI instability isn’t a show stopper.
So is there a technical barrier to upstreaming Rust
code to FreeBSD, for instance? In my opinion, I
don’t think so, but I’d be interested to hear others’
opinions on the both technical and political chal-
lenges of doing so.
I like Rust. It’s fun. And isn’t that what really

makes us come into work in the morning? •

GRAEME JENKINSON is Senior Research
Associate in the University of Cambridge's
Computer Laboratory, leading development of dis-
tributed tracing for the Causal, Adaptive,
Distributed, and Efficient Tracing System (CADETS)
project. Prior to working on CADETS, he has 13
years’ experience working in the defense and auto-
motive industries.

#include <iostream>
#include <memory>

using namespace std;

int main ()
{

unique_ptr<int> orig(new int(5));

cout << *orig << endl;
auto stolen = move(orig);
cout << *orig << endl;

}

REFERENCES
[1] B. Anderson, L. Bergstrom, M. Goregaokar, J. Matthews, K. McAllister, J. Moffitt, and S. Sapin. “Engineering the servo web browser
engine using Rust,” Proceedings of the 38th International Conference on Software Engineering Companion (pp. 81–89). ACM. (May 2016)
[2] L. Hatton. Safer C. 1st ed. London: McGraw-Hill. (1995)
[3] S. Klabnik. Unique Pointer Problems. Steve Klabnik's Home Page. Available at: http://www.steveklabnik.com/uniq_ptr_problem/.
(Accessed November 29, 2016)
[4] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. Watson, and P. Sewell. “Into the depths of C: elaborating
the de facto standards,” Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation
(pp. 1–15). ACM. (June 2016)
[5] The Rust Programming Language. “Getting Started.” Available at: https://doc.rust-lang.org/book/getting-started.html. (Accessed
November 29, 2016)

