
wift is a new general purpose programming language
from Apple that was announced at Apple's annual

WWDC event in 2014 and released as open source in 2015
under version 2.0 of the Apache License. It is designed to
replace Objective C, but to be more concise and safer, and
has been. Swift is primarily targeted at iOS application devel-
opment, but it is a complete general purpose systems pro-
gramming language and can be used for many tasks. It is
under rapid development and is portable to many operating
systems. Swift fully supports Unicode. It's easy to learn, fun
to use, and fast to run. Swift supports both imperative and
object-oriented programming, as well as generics, extensions,
try/throw/catch error handling, dynamic dispatch, extensible
programming, and late binding.

Safety
Memory is managed automatically, so there's no need to
manually allocate or free it, which avoids errors. As part of its
design goal of making programming safer, Swift largely
avoids exposing pointers to the developer, though it is possi-
ble to work with them where needed. It requires variables to
be declared before use, avoiding issues with implicit declara-
tion sometimes seen in scripting languages. Types may be
inferred for the sake of conciseness or declared where need-
ed for safety and clarity. Data types are strictly enforced for
safety, but types can be cast easily for flexibility.
Five different access controls are supported for symbols

(variables, functions, classes, etc.):
• Private - accessible only in the immediate scope
• Fileprivate - any code within the same file may access
• Internal - any code within the same module may access
• Public - accessible from any module
• Open - may be subclassed outside of the module (classes

and methods only)
These access controls apply regardless of inheritance and

allow explicit control of where code and data are used,
avoiding surprises and difficult troubleshooting.

S E E
T E X T
O N L Y

10 FreeBSD Journal

Nov/Dec 2016 11

How to Build It on FreeBSD
First, ensure you have FreeBSD 11 and the latest FreeBSD ports tree. Then:

cd /usr/ports/lang/swift ; make install

Swift uses a custom version of llvm, clang, lldb, cmark, and llbuild, so the build will take some time.
After this, you should be able to run the "swift" command and get an interactive prompt. You can also
save Swift files and call the Swift interpreter on them.

What’s Missing?
Swift can be interpreted or compiled, but currently only the interpreter works on FreeBSD. As of this writ-
ing, the lang/swift port is version 2.2.1, while the current release of Swift is 3.0.1. Work is underway to
update the port and enable the compiler. Swift tutorials are often focused around writing iOS apps, but
those require libraries that are part of iOS, which at this time are only available on iOS. Therefore, only
the core Swift programming language is available on FreeBSD.

Hello, World!
As with any programming language, the first program we write in Swift is one that prints "Hello,
World". In Swift, it's as simple as:

print("Hello, World!")

When entered into the interpreter, it looks like this:

(swift) print("Hello, World!")
Hello, World!

Swift doesn't require semicolons at ends of lines, but does allow them:

(swift) print("Hello"); print("World!");
Hello
World!

This helps keep the code easy to read, while also allowing developers to be as concise as they want.

Variables and Constants
Variables must be declared before they are used:

(swift) var message = "Hello, World!"
// message : String = "Hello, World!"
(swift) print(message)
Hello, World!

Again, the goal of conciseness is served by allowing the developer to skip declaring the variable type
since Swift has automatically determined that our message is a string type. Of course, where needed or
desired, variable types may be declared:

(swift) var message2: String = "Hello"
// message2 : String = "Hello"

Whoops, we forgot part of our message. Let's add it:

(swift) // add rest of message
(swift) message2+=", World!"
(swift) print(message2)
Hello, World!

12 FreeBSD Journal

Once again, conciseness is served by allowing simple string concatenation.
We can also specify constants:

(swift) let message3 = "Hello"
// message3 : String = "Hello"

Which can't be modified:

(swift) message3+=", World!"
<REPL Input>:1:9: error: left side of mutating operator isn't mutable:'message3'

is a 'let' constant
message3+=", World!"
~~~~~~~~^
<REPL Input>:1:1: note: change 'let' to 'var' to make it mutable
let message3 = "Hello"
^~~
var

This serves the goal of safety by allowing the programmer to specify some values as read-only where necessary.
The error message makes it easy to see where to change things if we want to make a variable read/write.

Types
Swift provides all C and Objective-C types, including Int, Double, Float, Bool, and string for textual data.

(swift) var four: Float = 4
// four : Float = 4.0
(swift) var five: Double = 5
// five : Double = 5.0
(swift) let six: Float = 6
// six : Float = 6.0

Once again, safety is served by enforcing variable type:

(swift) let result = four + five
<REPL Input>:1:19: error: binary operator '+' cannot be applied to operands of

type 'Float' and 'Double'
let result = four + five

~~~~ ^ ~~~~
<REPL Input>:1:19: note: overloads for '+' exist with these partially matching

parameter lists: (Float, Float), (Double, Double)
let result = four + five

^
(swift) let result = four + six
// result : Float = 10.0

But ease and flexibility are served by allowing them to be cast easily:

(swift) let result2 = four + Float(five)
// result2 : Float = 9.0

Swift helps us read numbers more easily:

(swift) let million = 1_000_000
// million : Int = 1000000
(swift) print(million)
1000000

Nov/Dec 2016 13

And once more, conciseness is served since Swift allows us to assign multiple variables at once:

(swift) var (foo, bar, baz) = (10, 100, 1000)
// (foo, bar, baz) : (Int, Int, Int) = (10, 100, 1000)

In addition, Swift provides Array, Set, Dictionary, Ranges, and Tuples:

(swift) let myarray: Array<String> = ["first", "second", "third"]
// myarray : Array<String> = ["first", "second", "third"]
(swift) let secondarray = [1: "Alice", 2: "Bob", 3: "Chuck"]
// secondarray : [Int : String] = [2: "Bob", 3: "Chuck", 1: "Alice"]
(swift) let People: Dictionary<Int, String> = [1: "Alice", 2: "Bob", 3: "Chuck"]
// People : Dictionary<Int, String> = [2: "Bob", 3: "Chuck", 1: "Alice"]
(swift) let range = 0...5
// range : Range<Int> = Range(0..<6)
(swift) let range2 = 0..<10
// range2 : Range<Int> = Range(0..<10)

Swift also introduces the innovative concept of Optionals, variables where values may or may not be present:

(swift) var daytime: Bool? = true
// daytime : Bool? = Optional(true)
(swift) var mayContainNumber = "404"
// mayContainNumber : String = "404"
(swift) var actualNumber = Int(mayContainNumber)
// actualNumber : Int? = Optional(404)

Swift implied that our actualNumber may or may not contain a number, rather than forcing us to specify it.
We use the "!" operator to get the value:

(swift) print("actualNumber has an integer value of \(actualNumber!).")
actualNumber has an integer value of 404.

However, we must be safe and check that the value exists before using it:

(swift) actualNumber = nil
(swift) print("actualNumber has an integer value of \(actualNumber!).")
fatal error: unexpectedly found nil while unwrapping an Optional value

So, we must write:

(swift) if actualNumber != nil {
print("actualNumber has an integer value of \(actualNumber!).")

}
(swift) actualNumber = Int(mayContainNumber)
(swift) if actualNumber != nil {

print("actualNumber has an integer value of \(actualNumber!).")
}

actualNumber has an integer value of 404.

Type Safety
Unlike C, the assignment operator does not return a value, so this produces a nice error message and once
again keeps us safe from easy typos:

(swift) if foo = bar {
print("fail")

}

CODE CONTINUES ON PAGE 14

14 FreeBSD Journal

<REPL Input>:1:8: error: use of '=' in a boolean context, did you mean '=='?
if foo = bar {

~~~ ^ ~~~
==

And also, helpfully suggests the necessary change.
Similarly, integers cannot be used as booleans:

(swift) let i = 1
// i : Int = 1
(swift) if i {

print("foo")
}

<REPL Input>:1:4: error: type 'Int' does not conform to protocol 'BooleanType'
if i {

^

Along with the requirement that variables must be declared before use, these requirements eliminate several
classes of common mistakes.

Control Flow
Swift has the usual control flow mechanisms, "if" and "switch" for conditionals, and "for" and "while" loops:

var value = 10
// Note {} are required for "if" and "while", even with just one statement
if value > 0 {

print("true")
}

// Note lack of break statements, cases do not fall through by default, but
// can with "fallthrough"

var weekday = "Thursday"
switch weekday {
case "Monday":

print("They call it stormy Monday")
case "Friday":

print("TGIF")
default:

print("Is it Friday yet?")
}

// Note use of Range and "in"
for value in 1...10 {

print("\(value) * = \(value * 9)")
}

while value > 0 {
print("Not yet")
value -= 1

}

Functions
Swift uses named arguments to functions, which makes the code easier to read and maintain, though in Swift
2.x the first name must be left off. Functions may or may not return a value. Take this example code 
(on next page):

CONTINUED FROM PAGE 13



Nov/Dec 2016 15

// function which greets user
// returns the greeting
func hello(user: String) -> String {

let result = "Hello, " + user + "!" // result not modified, so constant
return result

}

/* function which greets user a second time
(comments may be of either style) */

func helloAgain(user: String) -> String {
return "Hello again, " + user + "!"

}

// function which takes additional bool arg
func hello(user: String, seen: Bool) -> String {

if seen {
return helloAgain(user)

} else {
return hello(user)

}
}

// greet multiple users, doesn't return a value
func helloAll(users: [String]) {

// Ensure we were given users, otherwise next line would error
guard users.count > 0 else { return }
users.forEach { user in
print(hello(user, seen: false))
}

}

let users = ["Alice", "Bob", "Chuck"]
var seenUsers = ["Alice": true, "Bob": false]
seenUsers["Chuck"] = false
var nousers: Array<String> = Array()
helloAll(users)
print(hello("Alice", seen: true))
helloAll(nousers)

Save it to a file called multihello.swift and run it:

$ swift multihello.swift
Hello, Alice!
Hello, Bob!
Hello, Chuck!
Hello again, Alice!

Variadic functions are supported via "...":

func sum(values: Int...) -> Int {
var sum = 0
for value in values {

sum += value
}
return sum

}
sum(10, 20, 30)



Function nesting is supported:

func returnValue() -> Int {
var i = 1
func add() {

i += 1
}
add()
add()
add()
return i

}
returnValue()

(Returns 4)

And since functions are a first class type, they may be returned from other functions:

func returnAdder() -> ((Int) -> Int) {
func adder(number: Int) -> Int {

return 1 + number
}
return adder

}
var adder = returnAdder()
adder(10)

16 FreeBSDJournal

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations, 
and offers friendly, knowledgeable support staff. 

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options. 



Nov/Dec 2016 17

Classes
Swift is also object oriented. Classes can be declared like so:

class Building {
var numberOfFloors = 0
init(numberOfFloors: Int) {

self.numberOfFloors = numberOfFloors
}
func getDescription() -> String {

return "A building with \(numberOfFloors) floors."
}

}

class PaintedHouse: Building {
var color: String

init(floors: Int, color: String) {
self.color = color
super.init(numberOfFloors: floors)

}
override func getDescription() -> String {

return "A \(color) building with \(numberOfFloors) floors."
}

}

var house = Building(numberOfFloors: 2)
var houseDescription = house.getDescription()

let myHouse = PaintedHouse(floors: 3, color: "blue")
print(myHouse.getDescription())

Finale
There's much more to Swift, and I encourage everyone to give it a try. There are many good online 
resources on learning Swift:

https://swift.org/
https://developer.apple.com/swift/
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/
GuidedTour.html

There are even several that allow you to run code online via web browser:

https://www.weheartswift.com/swift-sandbox/

https://swiftlang.ng.bluemix.net/#/repl

STEVE WILLS is a husband and father living in North Carolina. He is a FreeBSD ports committer 
with a focus on Ruby and other programming languages.


