
T E A C H B S DT E A C H B S D

22 FreeBSD Journal

The second week of August 2016, George Neville-Neil visited the
Computer Science department at the University of Applied Sciences,
Darmstadt, Germany, where I work. George has worked with
Robert Watson at the University of Cambridge developing a master-
level course over the last several years.

T h e c o u r s e uses DTrace to analyze
and explore a live FreeBSD operating system. I
had arranged for George to come to my univer-
sity to teach an undergraduate version of the
course to a group of interested students in the
inter-semester holidays. This endeavour had
many goals: we were curious how the course
material, available online at teachbsd.org,
would work for undergraduate students, espe-
cially those who had not taken operating sys-
tems courses before. Another goal was to
adopt the course to contain less paper writing,
which is emphasized in the masters version of
the course. while still focusing on practical con-
tent. Lastly, we wanted to see how well the
German students would understand a course
taught in English and whether they would be
willing to ask questions and participate in class.

We were pleasantly surprised to find that
English was not a barrier for the students and
they soon started asking questions.

The course was divided into morning and
afternoon sessions with a break for lunch. The
morning sessions were typical lectures where
George explained how different kernel subsys-
tems work, giving both the theoretical back-
ground necessary to understand the concepts
as well as an overview of the implementation in
a modern operating system, FreeBSD. After
lunch, the students were given lab assignments
to solve using DTrace on virtual machines. The
labs covered the topics of what had been
taught during the morning lectures. Due to the
fact that these guest lectures were scheduled
over the semester holidays, we had only a
handful of students participating. The small
class size created a situation where we were

S E E
T E X T
O N L Y

By Benedict Reuschling and George Neville-Neil

Nov/Dec 2016 23

able to give more individual help to students,
throughout the week, which is usually not possi-
ble with a larger group.

M o n d a y s t a r t e d with an overview
of the course content, including a bit of computer
history. The introduction and overview sections
introduce students to the origins of operating sys-
tem development, its evolution, and reasons for
some of current OS implementations. Many parts
of modern operating systems come from the
interaction between hardware and software
advances, with one influencing the other. One
clear example is that modern RISC processors
were influenced by the rise of UNIX and the C
language; this type of tension motivates many of
the lessons we presented to the students. The
goal of the lab on Monday was to get the stu-
dents set up with their virtual machines and to
familiarize them with DTrace as a tool, letting
them get their hands dirty and take their first,
basic, traces.

Tu e s d a y m o r n i n g started with a
short quiz to determine the students’ current
knowledge level and to gauge how well Monday’s
topics were understood. We then continued by
explaining how processes work, what virtual
memory is, and how processes and threads are
scheduled in the operating system. A lot of atten-
tion was paid to the topic of locking, and what
challenges it poses, including deadlocks and lock
order reversals. Without a clear understanding of
concurrency and locking, students cannot really
appreciate many of the subtleties of modern hard-
ware and software, whether in an operating sys-
tem or in a multi-threaded user program. The lab
covered tracing processes and their various states,
getting the students to explain the UNIX process
life cycle. Feedback from the second day of the
course was turned into upated slides. More than
once, the night after a class was spent revising or
creating whole new sets of slides to illustrate con-
cepts that students struggled to understand dur-
ing the day.

With the basics of processes, virtual memory,
and concurrency having been covered, we then
moved on to communication in the operating sys-
tem. Starting with basic Interprocess Communi-
cation, we explained signals and how they are
used by programs and the operating system to
communicate. From basic IPC we moved on to
sockets and network communication. Networking

topics, including DNS, UDP, and TCP, were cov-
ered with an emphasis on how the operating sys-
tem implements TCP—connection setup, data
transfer, sliding windows, and connection tear
down. Since all of the students had already com-
pleted an undergraduate networking course, they
were able to quickly appreciate what the operat-
ing system needed to do to implement correct
TCP software. Due to this familiarity, the ques-
tions the students asked led deeper into the oper-
ating system than in previous sections. The com-
munication lab for that day had students trace the
TCP connection setup process using a local nginx
instance serving a static webpage.
We also had them visualize their derived state
machine using the graphviz package, which I
taught the students how to use.

T h e t o p i c o f T h u r s d a y ’s
lecture was data storage and filesystems. Things
like the namecache, virtual filesystem layer (VFS)
were explained, as well as reading and writing
data. The namecache always requires a good deal
of explanation as the concept of caching negative
results is one that most undergraduates have not
yet been exposed to. In the lab session, the stu-
dents explored the name cache a bit more and
how it interacts with nginx when a certain web
page URL is requested. The class day ended a bit
early on Thursday afternoon to give students time
to study for the exam on the next day.

O n F r i d a y , we gave the students a
whole systems view, combining all the topics dis-
cussed during the week. The lecture served not
only as a review session before the written exam,
but also tied everything together for the students.
Specifically, we explored what happens in all the
operating system layers when a web server, such
as nginx, serves a page. The students were
exposed to which worker processes were run,
what cache lookups are done, the TCP states that
are being created, etc.

The final was a 90-minute exam covering all
the topics of the week, with questions focusing
on details about the operating system implemen-
tation and the writing of a few one-liners for
DTrace. Students were allowed to use their lap-
tops throughout the exam in order to test and
verify their DTrace scripts before submitting the
final versions on their papers. The exam deter-
mined the grade for the students in the course.
We were very satisfied with the results after grad-

ver time, Unix operating systems have evolved a variety of
mechanisms to launch programs and influence their execution.
To put this into perspective, let’s take a quick tour of the dif-
ferent kinds of programs that run on a typical FreeBSD system.

When the computer first boots up, the
rc(8) mechanism launches programs called
“services” that can perform one-time system
initialization tasks, or execute daemons to
run in the background. These services can
also be stopped and started while the com-
puter is running.

Every minute the computer is running, the
cron(8) daemon wakes up and launches
scheduled tasks. Cron also supports the abil-
ity to run at(1) jobs after a certain time
interval has passed. It can also run
batch(1) jobs when the system load aver-

age falls below a certain threshold.
There are many other mechanisms for

launching programs. Inetd(8) launches
programs when an incoming socket is creat-
ed. nice(1) runs programs with a modi-
fied priority level. chroot(8) launches pro-
grams with an alternate root directory.
service(8) launches programs with a
“supervisor” process that can restart the
program if it crashes. Jail managers like
jail(8) launch programs within a jailed
environment. Virtual machine managers like
iohyve(8) launch programs that execute a

S

OO

The Browser-based Edition (DE)
is now available for viewing as
a PDF with printable option.

TM
TM

The Broswer-based DE format offers subscribers
the same features as the App, but permits view-
ing the Journal through your favorite browser.
Unlike the Apps, you can view the DE as PDF
pages and print them. To order a subscription,
or get back issues, and other
Foundation interests, go to
www.freebsdfoundation.org

JOURNAL

NEW
Viewing &

Printable

Options

$19.99
$6.99

YEAR SUB

SINGLE COPY

The DE, like the App, is an individual product. You will get an email notification each time an issue is released.

24 FreeBSD Journal

ing the exams and we are already discussing how
to further enhance the course based on this first
test-run.

When George was not teaching (which he
enjoyed very much), I was showing him around
our campus in Darmstadt, the city, and what good
restaurants we have. I also introduced him to
some professors who were not on holiday during
that week. George not only does great network-
ing on the systems level, but also in person. We
had some good discussions, ranging from teach-
ing in computer science to cultural diversity in
education and the integration of practitioners’
work into the university curriculum.

Some of the more amusing moments of the
course related to the inability of all the clocks at
the university to keep proper time. Either the bat-
teries were dead, or the timepieces were advanc-
ing too slowly or made no sense at all (“nowhere
in the world is it 16:00 hours now”). For a time-
keeping nerd like George, this proved to be a
recurring joke throughout the week.

Overall, it was a very productive week. We
gained valuable feedback for the teachbsd course
for undergraduates and the students got a lively
lecture about operating system internals. I hope to
integrate parts of these lectures into my own full-
semester course, and George is now planning a
return to Darmstadt to teach an updated, and
extended, version of the course. •

GEORGE V. NEVILLE-NEIL works on net-
working and operating system code for fun
and profit. He also teaches courses on various
subjects related to programming. His areas of
interest are code spelunking, operating sys-
tems, networking, and time protocols. He is the
coauthor with Marshall Kirk McKusick and
Robert N. M. Watson of The Design and
Implementation of the FreeBSD Operating
System. For over 10 years he has been the
columnist better known as Kode Vicious. He
earned his bachelor’s degree in computer sci-
ence at Northeastern University in Boston,
Massachusetts, and is a member of ACM, the
Usenix Association, and IEEE. He is an avid
bicyclist and traveler and currently lives in
New York City.

BENEDICT REUSCHLING joined the FreeBSD
Project in 2009. After receiving his full docu-
mentation commit bit in 2010, he actively
began mentoring other people to become
FreeBSD committers. He is a proctor for the
BSD Certification Group and joined the
FreeBSD Foundation in 2015, where he is cur-
rently serving as vice president. Benedict has a
Master of Science degree in Computer Science
and is teaching a UNIX for software developers
class at the University of Applied Sciences,
Darmstadt, Germany.

