
18 FreeBSD Journal

rom the beginning, FreeBSD has used the
GNU binutils linker. It is also known as the

“BFD” linker, after the Binary File Descriptor
library upon which it is built. FreeBSD develop-
ers kept the copy of the linker in the FreeBSD
tree up-to-date, importing new versions as
they were released by the GNU project.

Then, in the mid-2000s, the Free Software
Foundation (FSF) changed the license to ver-
sion 3 of the GNU General Public License
(GPLv3). It added new restrictions that some
FreeBSD developers and users found unpalat-
able. Since that time, developers in the
FreeBSD Project have continued to apply minor
updates and bug fixes, but the linker has not
been updated beyond version 2.17.50.

The need for a new linker for FreeBSD has
been apparent for some time, and a viable can-
didate emerged recently: LLD, the linker in the
LLVM family of projects. LLD is intended to be a
high-speed linker with support for multiple
object file formats. It supports the ELF format

S E E
T E X T
O N L Y

T H E

L i n k e r i n
F r e e B S D

������
��	�

������
��	�

�����
�����

�����

��������	�

������
����

�����	�� �����	��

������
����

A linker is a program that takes
one or more object files generat-
ed by a compiler or assembler and
combines them into one executable
program or library. It is part of
an operating system’s toolchain,
the set of programs used to build,
debug, and test software.

Linker Operation

A linker is a program that takes
one or more object files generat-
ed by a compiler or assembler and
combines them into one executable
program or library. It is part of
an operating system’s toolchain,
the set of programs used to build,
debug, and test software.

FIG. 1

Nov/Dec 2016 19

used by Unix-like operating systems, Windows’
COFF format, and Darwin/OS X’s Mach-O.

Where possible, LLD maintains command-line
and functional compatibility with existing linkers
such as GNU ld, but LLD’s authors are not con-
strained by strict compatibility where it hampers
performance or desired functionality. As with
other LLVM projects, LLD is released under a per-
missive Free Software license.

LLD can deliver for FreeBSD a modern, main-
tainable, and high-performance linker for the base
system. It will allow us to support the new CPU
architectures in FreeBSD using an in-tree tool-
chain, and will enable new performance optimiza-
tions like Link-Time Optimization (LTO).

History
LLD was added to the upstream LLVM source
repository at the end of 2011, with a design based
largely on linking requirements of the Mach-O for-
mat used by Apple and the atom model it implies.
Atoms are the smallest indivisible chunks of code
or data, and are a rather generic representation of
an object file. Along with Mach-O support, LLD ini-
tially included an atom-based ELF and COFF link-
ing implementation.

Linking the Mach-O format needs the flexibility
afforded by the atom model, but it’s an unneces-
sary complication for the ELF and COFF formats.
For these formats, the section is the smallest
usable unit.

In May 2015, Rui Ueyama of Google started
working on a new section-based COFF linker, and
two months later in July, Michael J. Spencer com-
mitted a new ELF linker implementation based on
the section-based COFF support. The new COFF
implementation was enabled by default in August,
and likewise for ELF in November.

By the end of 2015, LLD could form part of a
self-hosting FreeBSD amd64 toolchain: that is, it
was possible to build Clang/LLVM and LLD using
Clang/LLVM and LLD. Many developers improved
LLD throughout 2016, with notable FreeBSD-relat-
ed contributions from Rui Ueyama, Rafael
Espindola, George Rimar, and Davide Italiano.

Over the past year, I have been experimenting
with building the FreeBSD base system with LLD.
Although LLD could self-host at the end of 2015,
it lacked support for many features required by
FreeBSD. I created a bug report in LLVM’s bug

tracker as a “meta bug” to keep track of all of
the issues preventing the use of LLD as a FreeBSD
system linker. Over time it grew to 63 individual
issues, of which seven remain open.

Issues included lack of relocatable output, fine-
grained control over library search paths, arith-
metic expressions in linker scripts, comprehensive
versioned symbol support, and miscellaneous
command-line options. I had to disable the build
of FreeBSD’s boot loaders, 32-bit compatibility
libraries, tests, rescue binaries, and the GDB
debugger in order to link a subset of userland
binaries, although many did not run. Linking the
kernel was not possible, as it relies extensively on
the use of a linker script.

By March 2016, with a few temporary
workarounds in FreeBSD and LLD, I was able to
build a usable subset of the FreeBSD userland.
Symbol versioning and linker script expressions
were still unsupported, and the kernel could still
not be built as a result. However, the rapid
progress of LLD’s development convinced me it
was on track to become a viable system linker.

Symbol versioning and linker script expression
evaluation arrived a few months later. By August,
relocatable output and a somewhat esoteric com-
mand line option used in building boot loader
components were the significant features outstand-
ing. Now LLD is usable for nearly all aspects of the
amd64 FreeBSD base-system userland and kernel
build; the boot loaders are the only FreeBSD com-
ponents that still do not build with LLD.

Design
LLD’s design goals include speed, simplicity, and
extensibility. LLD attempts to be fast by doing less
work, and when it is necessary to do something,
doing it only once. Traditional UNIX linkers visit
objects sequentially, including objects specified
directly on the link command line and those
included in an archive. The linker builds a list of
undefined symbols, and links those objects that
satisfy the requirements for those symbols. The
new objects may in turn introduce new undefined
symbols, and objects may need to be visited multi-
ple times to resolve all undefined symbols.

LLD, instead, performs only one pass over the
specified object files and archives, keeping track
of both defined and undefined symbols found in
each object it visits. Symbols are resolved without

20 FreeBSD Journal

having to revisit objects or libraries again. This
results in slightly different linking semantics when
compared to traditional linkers, but well-written
software should see no difference. It is possible to
craft a scenario that works with a conventional
linker and fails with LLD, but that is expected to
be unlikely in practice. No broken cases have yet
been found while testing a variety of third-party
software with LLD as the linker.

The ELF and COFF linkers in LLD share the same
general design, but do not share code. They pro-
vide the same command line user interface as the
native linkers for each file format: GNU ld for ELF,
and Microsoft’s linker for COFF. This avoids the
complexity and runtime cost of an abstraction
layer. As a result of this approach, the ELF linker is
only about 13,000 lines of code. This number is
much smaller than other linkers (GNU ld and GNU
gold), even though it isn’t directly comparable, as
all three rely in different amounts on support
libraries.

As with other components in the LLVM family,
the linkers in LLD are implemented as libraries
with a lightweight command line driver. This
allows it to be easily embedded in other projects.

Performance
One of LLD’s primary design goals is to be a high-
performance linker. Small programs should link
quickly, and linking should not become exponen-
tially larger as program size increases.

The graph in Figure 2 compares the real (wall-
clock) time taken to link a release build of the
Clang compiler using several different linkers. The
linker inputs consist of 158 object (.o), static
library (.a), and shared library (.so) files, totaling
91 megabytes in size.

The experiment was performed on my develop-
ment desktop, which has a quad-core (8 thread)
Intel i7-3770 CPU and 32GB of memory. I com-
pared BFD ld 2.17.50 (the current FreeBSD base
system linker), BFD and Gold 2.27_5,1 from the
FreeBSD ports tree, and LLD built from the LLVM
source repository. By default, the Gold linker in
the FreeBSD ports collection is built without
threading support, and Gold’s threaded mode was
not investigated further.

Figure 3 compares the same linkers for a debug
build of Clang. The linker processes the same
number of files in this case, but the addition of

debug data makes them substantially larger and
requires the linker to do much more work.

LLD achieves this high performance in several
ways that can be briefly enumerated as: avoid
doing work where possible, perform expensive
but necessary operations only once, and use
threads to perform operations in parallel.

Several tasks in LLD can be performed in paral-
lel, including uncompressing input sections, split-
ting mergeable sections, merging common
strings, and identical code folding. Figure 4
demonstrates the effect of LLD’s use of threading.
The link completed 63% faster, but consumed
about one-third more CPU time.

This trade-off is worthwhile in a typical devel-

FIG. 2

FIG. 3

FIG. 4

Nov/Dec 2016 21

oper's edit-compile-test cycle. The final linking
step requires all of the individual compiler invoca-
tions to be complete, and there is likely no other
work the computer could do. When linking soft-
ware on a shared resource (for example, building
the FreeBSD package sets), disabling threads may
be a better choice.

Architectur al Support
LLD includes at least some support for almost all
the CPU architectures relevant to FreeBSD. As
described earlier, amd64 (or x86-64) is well sup-
ported, and LLD built from the development
repository is capable of linking a working
FreeBSD/amd64 kernel and userland, except for
the boot loaders.

32-bit x86 (i386) and AArch64 (arm64) sup-
port is also quite mature, but not yet well tested
in FreeBSD. LLD can self-host on arm64 and link a
working FreeBSD/arm64 kernel, with small
workarounds for outstanding issues.

32-bit ARM, 32-bit and 64-bit MIPS, and 32-
bit and 64-bit PowerPC are supported by LLD,
and are capable of at least linking trivial applica-
tions, but are not yet viable as a FreeBSD system
linker.

RISC-V support is being planned, but has not
yet started. It seems that sparc64 is the only
FreeBSD CPU architecture that is unlikely to be
supported by LLD.

L inker Optimizat ions
One large benefit LLD will bring to FreeBSD is base
system support for whole-program Link-Time
Optimization (LTO). LTO refers to optimization that
is performed across modules at link time.

A common optimization is to eliminate unused
code paths. With conventional linking, this can
be applied only within a single source file. With
LTO, the compiler and linker work together and
can eliminate code paths that can only be deter-
mined as unused when examining the whole
program.

For LTO the compiler emits an LLVM bitcode
file instead of native machine instructions in an
ELF object file. The linker processes these bitcode
files similarly to regular object files and allows
both types to be used together.

Another optimization can be performed by the

linker. Large C++ applications often contain func-
tions that compile to machine instructions identi-
cal to another function. Identical Code Folding
(ICF) is an optimization that identifies read-only
sections that happen to have the same content.
For a sample of large binaries, ICF reduces the
size by 5% to 8%.

Next Steps
Clang/LLVM 3.9 was recently imported into
FreeBSD’s development branch, and that work
included LLD 3.9. LLD is now installed as
/usr/bin/ld.lld on amd64 and arm64 for experi-
mentation and testing. On arm64, it is also now
installed as ld, as the BFD linker version 2.17.50
does not include arm64 support.

Linking the boot loaders with LLD must be
addressed next. LLD developers are actively work-
ing on issues in LLD that prevent this, and some
changes may also be required in FreeBSD. Once
this is complete, a newer snapshot of LLD will be
imported into FreeBSD and made available with a
build-time configuration setting (for example,
WITH_LLD_AS_LD=yes). The ports tree will then
be extensively tested using the in-tree LLD as the
system linker.

The investigation and iterative bug fixing
approach will need to be undertaken on all of
FreeBSD’s supported CPU architecture.
Experimentation with linker optimizations will
then proceed for both the FreeBSD base system
and ports collection. •

ED MASTE manages project
development for the FreeBSD
Foundation and works in an
engineering support role with
the University of Cambridge
Computer Laboratory. He is
also a member of the elected
FreeBSD Core Team. Aside
from FreeBSD and LLVM proj-
ects, he is a contributor to sev-
eral other open-source proj-
ects. He lives in Kitchener,
Canada, with his wife, Anna,
and sons, Pieter and Daniel.

