
4 FreeBSD Journal

S E E
T E X T
O N L Y

By Sean Kelly

If you’ve not heard of us, FlightAware is the
world’s largest flight-tracking data company,

providing over 10,000 aircraft operators and
service companies with global flight-tracking solu-

tions. We provide free flight tracking to the general
public on our website and via our mobile apps, but we

also have other commercial products and services used by air-
craft operators around the world. We accomplish this by aggre-
gating data from our own ground stations, government data
sources covering over 55 countries, and other satellite-based
providers. We then take all this data, interpret it, and turn it into
more holistic views of what is going on. As you might expect,
this requires a fair amount of processing and storage.

FlightAware and FreeBSD
I t i s the greatest , most ly.

Jan/Feb 2017 5

At FlightAware, our business to date has
been built on top of FreeBSD, and we are
very strong proponents of it. We have

four employees who are inactive members of the
FreeBSD Project, including our CEO and CTO. Up
until very recently, FreeBSD was used almost
entirely to power our site and services with only
a handful of exceptions. This, however, is starting
to change and I’d like to explain why. But first,
let’s cover our history with FreeBSD and how
we’ve been using it.

Our CEO used to run ftp2.freebsd.org and he
contributed to the ports tree. He has been using
FreeBSD since the 2.0-ALPHA days and continues
using it both professionally and personally to this
day. Our CTO goes further back, to the begin-
nings of 386BSD, where he maintained patch
kits and later contributed loopback detection to
the T1 driver. Going back even further, one of
our developers did a lot of hacking on 2BSD and
4.1BSD and later helped with the FreeBSD
Handbook. Finally, I started using FreeBSD at the
release of 4.0 and have contributed some patch-
es as well as the initial implementation of the
software watchdog subsystem.

Along with FreeBSD, we use the Tcl program-
ming language extensively. This includes our
website, which is written in Tcl and served by
Apache’s mod_rivet extension. Several ports of
our Tcl packages exist in the ports tree, including
speedtables, casstcl, yajl-tcl, tcllauncher, tclread-
line, and tclbsd. These ports are maintained by
tcltk@ and Pietro Cerruti. While Pietro is not a
FlightAware employee, he generously updates
ports to coincide with our software releases.

Some of the reasons that we do use FreeBSD
include the stability and robustness of the net-
work stack, the cohesive community, the holistic
view of the system from kernel to userland, and
ZFS. All these things combine to create an opti-
mum and trustworthy open-source environment
for our servers and services.

How We Use It
Like many others, we run web servers, Varnish
servers, mail servers, and DNS servers on
FreeBSD. While not entirely unusual, there are
several other things we do on the FreeBSD plat-
form that may interest others a bit more. These
include a custom FreeBSD installer, high transac-
tion RDBMS, a few different in-memory databas-
es using shared memory, and, of course, all of
these utilize the fantastic ZFS filesystem.

Installation: A Server Is Born
While bsdinstall is a great improvement on
sysinstall, we still needed something that provid-
ed much more automation. Almost all of our
servers start with the same base install, so it was
unnecessary for us to repeatedly punch the same
information into bsdinstall. Instead, we devel-
oped a set of scripts that incorporate bsdinstall
and bsdconfig. These scripts run from a mfsBSD
PXE environment and do the following:

• Destroy any existing hardware RAID configura-
tion and partitions

• Wipe any existing ZFS labels on disks
• Create a new zpool on all internal disks
• Create all the appropriate ZFS filesystems to

support boot environments
• Pull down the FreeBSD installer files and un-

tar them
• Create a user
• Configure all network parameters

Once that is complete, the machine reboots
and we’re prompted with a menu where we can
select the components we’d like installed. Each
component is managed by a shell function inside
of a shell script, making it easy to manage and
modify. When we need a new component, we
just create a new function.

All this evolved over time. Ideally, we’d like to
be able to have an installer that will do a PXE
boot, find a configuration file matching a MAC
address, and do a full headless installation from
that configuration file. It would be even better if
this was built into FreeBSD so that FreeBSD had
an easy zero-touch deployment system that was
standardized and each shop didn’t have to roll
their own.

Traditional Databases:
Make It Fast
While it is less novel than our custom installer,
another use for FreeBSD at FlightAware is to
power our PostgreSQL database cluster. We chose
FreeBSD for this especially due to the data integri-
ty features provided by ZFS. Another nice benefit
is the LZ4 compression which yields a compression
ratio of around 2.15x with a negligible perform-
ance impact. The cluster itself is a standard
PostgreSQL 9.4 setup using the native streaming
replication support. We use pgpool to load bal-
ance read-only transactions while all write trans-
actions go to the master. This allows us to spread
queries out over a larger number of servers,

6 FreeBSD Journal

increasing our transaction processing potential due
to most transactions being read-only.

In October 2015, we transitioned our
PostgreSQL servers away from 24 hard disks in ZFS
mirror pairs to use four NVMe SSDs in mirrored
pairs. This was a huge performance gain once we
got past issues with TRIM that eventually resulted
in us disabling it. The NVMe subsystem timed out
upon zpool create since ZFS was trying to TRIM
the entire pool and NVMe gave up waiting on the
SSD to do it. We also had issues during normal
operation when TRIM was executed on Samsung
SSDs that caused several outages. When
PostgreSQL would clean up pg_xlog files, it would
essentially briefly stall I/O due to TRIM. We’ve since
switched to Intel SSDs which don’t seem to exhibit
the problem, but we left TRIM off anyway.

To back up all of this, we developed a custom
toolset in Tcl that manages ZFS snapshots. The
tool takes a snapshot on a database server, sends
it to another host where it is staged, and from
there the snapshot is dispersed to various sites.
These same tools also manage the retention poli-
cy for the snapshots, keeping a certain amount of
hourly, daily, and weekly snapshots on hand.

In-Memory Databases:
Making Fast Faster
Along with our PostgreSQL databases, we also
have internal software called Birdseye. Birdseye is
an in-memory database written in Tcl and C, and
based on our open-source speedtables project.
Birdseye uses shared memory to store approxi-
mately 24 hours of positions for all aircraft that
we know about. Multiple Birdseye processes on a
single machine share the same shared memory
segments so that more clients can be serviced
concurrently. Clients, such as the website, can
then connect to these Birdseye servers and make
all sorts of queries to very quickly discern what a
plane is doing, has done, or even what is happen-
ing within an arbitrary geographical box.

Along with Birdseye, we have another in-mem-
ory database of sorts called Superbird. Superbird,
too, is based on our speedtables project and is
written in Tcl with some generated C. Superbird
will periodically read in any changes that have
been made to PostgreSQL tables and keep them
in an in-memory speedtables database. This is
leveraged by the website so that it is possible to
make faster queries of busy tables by accessing a
local in-memory cached copy rather than needing
to access an off-host PostgreSQL server. In other
words, Superbird is a database caching layer uti-
lizing update polling.

As you can see, shared memory is an impor-
tant technology for us. We use it quite extensively
with our internal tools as well as with third party
projects like PostgreSQL. We’ve found that the
overall performance of SHM has gotten better in
the last several years and hope that it continues
to do so. We noticed significant improvements
with FreeBSD 9 and a bit again with FreeBSD 10.

Pain Points:
Not Everything Is Perfect
Now that we’ve covered how FreeBSD works for
us, we’d be remiss to not discuss our pain points.
FlightAware is rapidly growing, as is our need to
be able to deploy new systems and services at an
ever-increasing rate. Further, data growth and
increasing ingestion rates are causing us to reeval-
uate how we store, process, and analyze our
datasets. This is where our choice of FreeBSD
becomes harder to continue and justify.

Installation:
An Arm of Servers
One amazing thing about FreeBSD is that it can
be installed on a system and then mostly forgot-
ten. You obviously want to install updates and so
forth, but the system is generally rock solid and
requires very little ongoing maintenance and care.
As a result, we tend to treat our FreeBSD systems
as unique rather than as a fleet of entirely dispen-
sable resources. We’ll add and remove software,
but rarely do we find the need to do a clean
install. The problem with this is that the approach
doesn’t scale well. As a result, we’re starting to
treat operating system installs as a commodity.

As I discussed earlier, we’ve built our own
FreeBSD installer that mostly works for us to
address this change. It isn’t great and we’d like to
add more features, such as the ability for it to
TFTP a configuration file for entirely headless
installs. Maybe there would be a base configura-
tion file and then there could be a MAC address-
based or SMBIOS system serial number-based
override file. But instead of us implementing this
for our own tools, it’d be fantastic if this was just
part of the FreeBSD installer.

The FreeBSD installer should support entirely
headless installations with documented scripting
functionality. This is something that the Linux
world conquered long ago with the Red Hat kick-
start system or the Debian preconfiguration file.
The installer could be PXE booted and then use
DHCP options to direct it to where it can down-
load configuration data. This would make it trivial
to deploy or redeploy hundreds of servers at once.

FlightAware and FreeBSD

Jan/Feb 2017 7

Containers and Isolation:
When Jail Isn’t Enough
Now that I’ve shared my vision for how the
FreeBSD installation process could be improved,
let me explain what it is we want to do with
fleets of heedlessly installed servers.

We are rapidly moving away from deploying
services on a standard system installation. Like a
lot of cloud scale companies, we are adopting a
containerization approach that will allow us to
easily deploy many services on a single piece of
hardware without the software and library
dependencies that this traditionally introduces.
We’d like to have every base installation be identi-
cal and serve as nothing but a platform for host-
ing application containers. This simplifies installa-
tion and management.

As one potential path toward this, we did
some evaluation of jails and found them mostly
serviceable. However, we opted not to move in
that direction due to several issues we faced. One
glaring issue is the lack of per-jail shared memory.
FreeBSD jails’ shared memory is not isolated from
each other or from the base system. The lack of
separation means services like PostgreSQL and
Birdseye can’t be securely deployed in adjacent
jails without special care to avoid conflict or
exploitation. For example, running PostgreSQL in
adjacent jails is risky due to the pgsql user having
the same UID and thus each jail having access to
the other jail’s IPC resources.

Despite all of this, a lot of progress seems to
have been made by adding RCTL to GENERIC, but
we’d also like to see more focus in this area.
VIMAGE should be made stable and added, as
well. Further, we’d like to see more namespacing
for things like shared memory implemented to
provide true isolation. This is one area where
Linux is ahead and has resulted in technologies
like Docker and Kubernetes thriving.

The actual container mechanism is important,
but how it is managed is also a big deal. As it is,
FreeBSD has many ways to manage jails that are
in various states of support and development.
We’ve got ezjail, iocage, CBSD, jail(8)’s
/etc/jail.conf, and many other homegrown tools
and derivatives. While choice is almost always a
good thing, this diverse ecosystem also makes it
harder for automation and orchestration tools to
target support for jails. It would be fantastic if
there was a way as part of base to bring all of the
diverse features under one roof—one set of APIs
and commands to rule them all.

64-bit Java:
Twice as Good as Before
As I already mentioned, our datasets are growing
as is the amount of data we ingest. This has
caused us to turn to newer technologies like
Cassandra, Kafka, and Spark to store, move, and
make sense of it all. All these have one thing in
common: they run on the Java Runtime
Environment.

There are not a lot of options for Java on
FreeBSD. You can build and use the OpenJDK
open-source implementation of Java which can be
compiled into a native 64-bit implementation. You
can also use the 32-bit Linux JRE from Oracle
through the FreeBSD Linux emulation. However,
only until very recently have 64-bit Linux system
calls been supported and we’ve not successfully
gotten the 64-bit Oracle JRE to run on FreeBSD.
Finally, The FreeBSD Foundation used to offer a
FreeBSD native binary for the Oracle JRE, but that
is no longer available.

So you’re probably wondering what our prob-
lem is and why we don’t just use OpenJDK. The
answer is that we’ve encountered issues with it
that were hard to pin down. With Kafka, we saw
periodic message corruption using OpenJDK that
we didn’t see with the Oracle JRE. Not to mention
that the Oracle JRE is the authoritative implemen-
tation of Java which matters in a production envi-
ronment. After that, we chose to use the Oracle
JRE at least until we can circle back and retest and
help fix OpenJDK.

We want 64-bit and we’ve chosen Oracle’s JRE
as the path forward. That means that we had to
turn to Linux in order to run our Kafka,
Cassandra, and Spark environments. As we con-
tinue to build out these services, this will result in
us having more and more Linux.

System Tuning:
My Server Isn’t That Wimpy
Another area that could use more attention is
out-of-the-box tuning for a FreeBSD install. While
many defaults seem to be tuned for the absolute
least common denominator of support, it’d be
great to implement some way to have profiles
that can be selected during install. Let me explain
with concrete examples.

Right now, we compile our Tcl interpreter with
an additional CFLAGS value of -DFD_SETSIZE=4096
to override the default of 1024 from <sys/select.h>.
We know that select() isn’t ideal and we’ve put out
a bounty for Tcl kqueue support, but at the same
time 1024 seems really small for modern day net-

8 FreeBSD Journal

work applications. It’d be great to see this
increased so that FreeBSD systems could be ready
to handle all of the concurrent connections that it
can otherwise effortlessly support without further
tweaking by the user.

Default log rotation sizes are also something that
needs some attention. According to the
/etc/newsyslog.conf on a fresh FreeBSD install, most
log files should be rotated after they grow to be
100KB in size. I don’t know about you, but my
/var/log/messages and my /var/log/auth.log don’t
take very long to reach that. In an era where you
can get 10TB hard disks and 1TB SSDs, this seems
like an obvious candidate for a profile system with
options for embedded, server, desktop, etc., so that
the target rotation size is more reasonable. Even
100KB seems small for a SD card-based system.

While I’m complaining about logging, this
seems like the opportune time to suggest some
features. Can we get an include directive for
/etc/syslog.conf? newsyslog.conf has one, so it
seems reasonable that syslog should as well. Some
improvements to the ! program specifier in sys-
log.conf would be nice too. As it is, in order to log
all messages from postgres to
/var/log/postgres.log, I have to do something like:

Capture PostgreSQL logs
!postgres
. /var/log/postgres.log

Capture all other logs
!-postgres
. /var/log/all.log

It would be nice if there was a way to have a
program specifier that matched anything except
other defined program specifiers. Then you can
have a catch-all section without having to list the
exclusions out specifically. This will also work
around another issue I encountered: the maximum
line length of syslog.conf is too short for listing
these out.

Finally, another area that could be improved is
overall network stack tuning. If you search
Google, you can find lots of different pages that
tell you sysctls and tunables that you should be
setting to maximize your network stack and
10GigE NIC throughput. It would be great if there
was a profile selection during install that could
tune things to be great for Varnish, nginx, Apache,

and so forth, as well as GigE, 10GigE, or 40GigE
networking. As it is, it is sort of a dark art to get it
set up and fully understand it.

Debugging:
Because Things Break
What would you do if the zpool command
dumped core? For me, I’d fire up the debugger
and hope to see where it crashed by loading up
the core file. Unfortunately, the base system lacks
debugging symbols when you install a release ver-
sion of FreeBSD. Why is this? Are they too big, just
like those 100KB log files? It would be nice if base
binaries weren’t stripped, or at least an optional
system component included symbol files for all of
the base binaries and libraries.

Similarly, the ports tree defaults to building soft-
ware without symbols. Most ports have a DEBUG
option you can enable that will cause the software
to be built with symbols but generally without any
compiler optimizations enabled. This isn’t ideal for
production. I’d like to see a universal option to
build a port with optimization but also with
debugging symbols, ideally by default. I under-
stand that the debugging will be a bit harder with
something built using -O or -O2, but it is sure bet-
ter than nothing.

Finally, everything should have DTRACE by
default. DTRACE is an amazing tool that
FlightAware has used on more than one occasion
to understand a performance problem or system
failure. Both PostgreSQL and Tcl conveniently have
extensive DTRACE support. However, ports does
not enable this by default. In our opinion, every
port should default to building with DTRACE. It
isn’t needed on a day-to-day basis but, like debug-
ging symbols, it is invaluable when a problem
eventually does appear.

Wrapping Up
I hope I’ve been able to make it clear that
FlightAware really does prefer and advocate for
FreeBSD. That being said, there is always room for
improvement and I set out to explain here what
could be improved in FreeBSD to make it work
better for us and presumably others. It is time to
start looking at ways to make it easier to increase
the number of installs in the wild and make it easi-
er to treat FreeBSD as a commodity platform. •

FlightAware and FreeBSD

SEAN KELLY has been a member of the FlightAware team since 2012. He serves as the Director of IT
Operations. In this role, Sean designs and oversees the growth and maintenance of both the worldwide infra-
structure that powers FlightAware as well as all of the IT systems powering FlightAware's two corporate offices.
Sean is also a former committer of the FreeBSD Project and has been using FreeBSD since at least the 4.0 days.

