
S E E
T E X T
O N L Y

By Brad Davis and Andrew Fengler

March/April 2017 15

Programmatic Configuration
The main strength of Puppet, and any configuration management tool, is the ability to control con-
figuration elements in a programmatic manner. Puppet accomplishes this with an object-oriented
system. The most basic element is a resource definition, where a resource could be a file, a pack-
age, a command to be executed, or any number of similar things. And if the built-in resource types
are not enough, it is possible to define custom resources. Resource definitions along with condi-
tional structures are used to construct classes. These classes are the primary elements giving control
on a per-host basis. Each host, or node as Puppet calls them, has a node definition where configu-
ration for that specific host is controlled. Although it is possible to configure all of the resources
here, it makes more sense to create classes that can be reused: for instance, an indefinite number
of webservers can easily be brought up to an identical state by simply including a class that defines
how the webservers should be configured.

o n F r e e B S D
PRIOR TO PUPPET THE MAIN CONFIGURATION MANAGE-
MENT TOOL WAS ONE CALLED CFENGINE THAT STARTED
IN 1993. PUPPET WAS FIRST RELEASED IN 2005 AND
HELPED KICKSTART SOMETHING OF A REVIVAL IN THE
CONFIGURATION MANAGEMENT SPACE. NOW IT IS
WIDELY CONSIDERED TO BE ONE OF THE MOST POPULAR
CONFIGURATION MANAGEMENT TOOLS OUT THERE.

uP ppet

16 FreeBSD Journal

Puppet
Applying Configurations
There are two ways to run Puppet. The first is to use `puppet apply` to install from a local set of configura-
tions. This is the simplest, but it requires some method of copying the configurations to each node. It also
lacks the ability to use PuppetDB. The other method is to run a dedicated Puppetmaster. In this configura-
tion, the nodes will all connect into the central Puppetmaster and fetch the configs from there. The other
advantage of this system is that the nodes will send all their facts to the Puppetmaster. Facts are snippets
of information about the node, such as the OS, netmask, number of cpu cores, etc. These facts can be
used as variables in conditionals allowing control of resources: for instance, it is possible to select a pack-
age repository based on the OS version. With all the facts on the Puppet master, a utility such as
Puppetboard will provide a view of what's happening on all the servers. It will show breakdowns of facts,
the results of Puppet executions, and details on what's changing or has failed. Facts are provided by a
library that Puppet depends on called 'Facter'. This tool can be run from the command line to inspect the
results on a given machine. The Puppet-specific facts can be viewed by running:

puppet facts

Running on FreeBSD
Puppet, Puppetserver, and PuppetDB can all be installed from the ports tree, making getting started on
FreeBSD very simple. For example, to install the current version of Puppet as of the time of this writing,
use:

pkg install puppet4

Other versions are available to be backwards compatible, as long as they are supported by the Puppet
project.

The latest version of PuppetDB can be installed by:
pkg install puppetdb4

PuppetDB is not required, but does provide some advanced features to a Puppet installation. For exam-
ple, the ability to use facts from other nodes on a different node. We will not be covering PuppetDB in this
article, but want to mention its availability for advanced users.

From there, simply write a few resource definitions in a class, import that in a node definition, then
point the Puppet agent at the server or configurations—depending on which method you picked—and
Puppet is up and running! Then comes the fun part of managing everything. There are surprisingly few
gotchas for FreeBSD, and as of Puppet 4, pkgng is a supported package provider out of the box.
Configuration files can be easily managed by using templating. Puppet uses a templating system from
Ruby called ERB, which allows embedding of Ruby code itself into the files and has access to all variables
Puppet knows about the environment.

Example Using agentless
Puppet in so-called agentless mode is a good way to test recipes before applying them to lots of machines.
It is very handy to just spin up a jail or VM quickly and run apply to test the configuration.

For example, if we create a file called 'test.pp' and it contains the following recipe to install nginx:
package { 'nginx':

ensure => installed,
}

it can easily be executed by running:
puppet apply test.pp

For more debugging information to see what might not be working, enabling full debugging mode and
verbose mode can be very helpful:

puppet apply -d -v test.pp

Example Using a master/agent
After installing Puppet, on the master, enable it with:

sysrc puppet_master_enable=YES

Then start up the master:
service puppet_master start

On the client (which could be the same machine):
sysrc puppet_enable=YES

Modify the puppet.conf to point to the IP or hostname of the master. In this case, we will be pointing
to localhost:

master: 127.0.0.1

And start up the client:
service puppet start

Once the master and agent are started, the agent will attempt to connect to the master. They will
then create an internal Certificate Authority to authenticate each other. The agent will generate a client
certificate and upload it to the master. You will be able to see the agent waiting for the master to accept
its certificate in the logs. This certificate can be viewed on the master by running:

puppet ca list

Then you should see the certificate from your client. It will look like:
"hostname" [sha256 checksum of certificate request]

Now sign the certificate:
puppet ca sign hostname

The agent should receive the certificate and continue on with its run. However, it's not going to do
very much, and will spit out a big yellow warning:

ERROR: Could not fetch my node definition, but the Puppet agent run will continue
Looks like we'll need to create a node definition.

Creating a Simple Configuration
Let’s start by going to our Puppet configuration directory, /usr/local/etc/puppet/ by default. Our configu-
ration environments go in the "environments" directory. You can have multiple environments, and the
Puppet agent can be configured to select which environment it uses. This means you can have separate
branches for development and so on, but, for now, the default "production" environment should be
perfect for testing. Each environment has a "manifests" and a "modules" directory. Site-wide manifests,
such as common configuration and node definitions, go under manifests, and modules holds reusable
blocks of configuration.

Puppet files end in .pp, so let's create our node definition. A node definition matches the hostname
of the node, either exactly, or a regex match. Create localhost.pp with the following content:

node 'localhost.example.com' {
$host_desc = "My computer"
$colorscheme = "desert"

file { "/etc/test":
ensure => present,
user => "root",
group => "wheel",
mode => "0644",
content => "Hello World! This is ${host_desc}\n",

}
}

March/April 2017 17

Puppet

18 FreeBSD Journal

Puppet
And that's a simple node definition. We set two variables to use later and created your first file. You

can see that the file has a number of options set, namely its owner, group, permissions (mode), and what
goes in the file. Save this, and do another Puppet run. If you started the Puppet service, it will run every
so often, but if you don't want to wait, you can trigger a run with the --test or -t flag:

puppet agent -t

And that will set off a run. When it's finished, you'll have a shiny new file.
Now let’s create our first module. Let’s say we want our favorite editor and all its settings on our com-

puter. Under the modules directory, create a directory called "vim". Inside that, a number of subdirecto-
ries are used to hold different parts of the module. Create a "manifests" directory; this will hold all the
Puppet configuration for this class. For modules, there must always be a class that has the same name as
the module in a file called "init.pp". This is the starting point of the module, and we can add more files
with extra classes to include if needed. Create init.pp:

class vim {
package { "vim-lite":

ensure => latest,
name => "editors/vim-lite",
provider => "pkgng",

}
file { "/home/beastie/.vimrc":

ensure => present,
user => "beastie",
group => "beastie",
mode => "0644",
source => "puppet:///modules/vim/vimrc",

}
}

We've managed two more resources: a package that will install vim-lite using pkgng, and a file that
will install our vimrc. Notice how we used "source" instead of "content". Instead of placing some
text in a file, this will get a file from the Puppetmaster. These files also go in the "vim" module, but
under a "files" subdirectory instead of in the manifests directory. The format for the file URLs is
"puppet:///modules/<module name>/<file name>". So, our
"puppet:///modules/vim/vimrc" URL will look for "modules/vim/files/vimrc" under the
current environment.

Every resource type offers a different set of options. For files, there are a wide variety of options, one
of which is "ensure". This determines what state we want the file to be in. When we're done with that
file, you can clean it up by setting ensure to "absent".

Now that we have a class, just add the line "include vim" to our node definition, and it will add
the entire vim class. We can add it to as many nodes as we want with just a single line. But let’s say we
need to change a setting on some servers. This is easy to do with a template.

Templating
Templating is a very powerful feature in any automation system. The templating system has access to all
the variables from Facter, so it knows all about the machine. It allows for very complex configuration
across many machines to be expressed simply. For example, to template a configuration file where it is
necessary to do something like set the IP address to bind to, first create a resource for the file like:

file { '/usr/local/etc/nginx/nginx.conf':
ensure => 'file',
owner => 'root',
group => 'wheel',
mode => '644',
content => template('/usr/local/etc/puppet/templates/nginx.conf'),
require => Package['nginx'],

}

The templating engine works on template code found between "<%=" and "%>". Now here is a
snippet of what the template could contain:

http {
server {

listen <%= @ipaddress %>:80;
server_name <%= @fqdn %>;
location / {

root /usr/local/www/nginx;
index index.html;

}
}

Note that the variables begin with an "@" symbol. This will give us a result like:
http {

server {
listen 192.168.11.10:80;
server_name test.example.com;
location / {
root /usr/local/www/nginx;
index index.html;

}
}

There are many more powerful things that can be done with templating including using Ruby func-
tions to create more advanced functionality. As a slightly more complicated example of what can be
done with templating, one time it was used to modify one of the variables using the Ruby gsub function

March/April 2017 19

ver time, Unix operating systems have evolved a variety of
mechanisms to launch programs and influence their execution.
To put this into perspective, let’s take a quick tour of the dif-

ferent kinds of programs that run on a typical FreeBSD system.

When the computer first boots up, the
rc(8) mechanism launches programs called
“services” that can perform one-time system
initialization tasks, or execute daemons to
run in the background. These services can
also be stopped and started while the com-
puter is running.

Every minute the computer is running, the
cron(8) daemon wakes up and launches
scheduled tasks. Cron also supports the abil-
ity to run at(1) jobs after a certain time
interval has passed. It can also run
batch(1) jobs when the system load aver-

age falls below a certain threshold.
There are many other mechanisms for

launching programs. Inetd(8) launches
programs when an incoming socket is creat-
ed. nice(1) runs programs with a modi-
fied priority level. chroot(8) launches pro-
grams with an alternate root directory.
service(8) launches programs with a
“supervisor” process that can restart the
program if it crashes. Jail managers like
jail(8) launch programs within a jailed
environment. Virtual machine managers like
iohyve(8) launch programs that execute a

OO

The Browser-based Edition
(DE) is now available for

viewing as a PDF with
printable option.

TM

The Broswer-based DE format offers sub-
scribers the same features as the App, but
permits viewing the Journal through your
favorite browser. Unlike the Apps, you can
view the DE as PDF pages and print them.

To order a subscription, or get
back issues, and other

Foundation interests, go to

www.freebsdfoundation.org

JOURNAL

NEW
Viewing &

Printable

Options

$19.99
$6.99

YEAR SUB

SINGLE COPY

The DE, like the App, is an
individual product. You will
get an email notification each
time an issue is released.

20 FreeBSDJournal

and then the result was embedded in the file.

Dependencies
One issue you can run into is that some resources will require other resources in order to function.
Starting a service before you have its config file in place will not likely do what you want.
Dependencies are a lot better in Puppet 4, as resources are now applied in the order you place them in
files. Previously, this was not the case as they were sorted prior to execution. However, you may still
need to specify a dependency order.

The primary way is with the "require" keyword. There are two ways to use it. You can require an
entire class:

require nginx

This works exactly like "include nginx", but will ensure the entire class is applied before contin-
uing. The other way is to require another resource:

package { 'zsh':
ensure => 'installed',

}
user { "beastie":
ensure => "present",
comment => "Beastie",
groups => ["beastie", "wheel"],
shell => "/usr/local/bin/zsh",
require => Package['zsh'],

}
file { "/home/beastie":

ensure => "directory",
mode => "0644",
owner => "beastie",
group => "beastie",

}

This user will depend on the Z Shell package being installed, and because the files depend on the
owner and group, those will automatically depend on the user.

Node Interaction
You may need servers to be aware of each other, whether to whitelist IPs, or to know where to listen
for a heartbeat. The difficulty is that normally this would require hardcoding long lists of addresses.
Puppet has a feature called "exported resources". These resources are much like normal resources, but
instead of being installed on the host, they are stored on the Puppetmaster for any node to collect.
Resources can also be tagged, making it easy for a server to pick up an entire directory of configs with
a single line.

We can export a file like this:

@@file { "/usr/local/etc/nagios/puppet.d/jail_${hostname}.dns.cfg":
ensure => present,
content => template('nagios/server.cfg.erb'),
tag => "nagios_config",

}
And then pick up any files tagged "nagios_config" on another host:

File <<| tag == "nagios_config" |>> {
}

This will create the file on the server that picks it up. Note that we use the hostname in the file-
name. This way if we export configs from several hosts, they won't collide.

Conclusion
There are a few different ways to view the documen-
tation, but one of the best sources is the Puppet
documentation website available here:
https://docs.puppet.com/puppet/latest/. Additionally,
for help for specific Puppet commands, from the cli:

puppet help <cmd>

This provides a good foundation to getting started
with Puppet and making life easier for any Systems
Administrator or anyone else interested in automat-
ing building of their environments. •

ANDREW FENGLER is a Unix administrator
working for ScaleEngine Inc. in Hamilton,
Canada, where he manages a large number
of Unixen with Puppet. He has two years’
experience administering FreeBSD sys-
tems at scale.

Professionally, BRAD DAVIS has been infra-
structure systems architect, developer, and
is now a consultant. He has been a FreeBSD
committer for over 10 years and involved in
many different areas of the Project. Initially
starting out as a documentation committer,
he used that to launch into helping the
Cluster Administration and Postmaster
teams. After retiring from those teams,
he dabbled in pkg and poudriere. These
days he is working on various ports, pack-
aging the FreeBSD base system and a proj-
ect called RaspBSD to nicely package up
FreeBSD and some extra tools for ARM
boards like the BeagleBone Black and the
Raspberry Pi.

Advertise Here

CLIMB
WITH US!
� LOOKING
for qualified

job applicants?

� SELLING
products

or services?

Email walter@
freebsdjournal.com

OR CALL

Let FreeBSD Journal
connect you with a

targeted audience!

888/290-9469

