/ SEE
TEXT

{ ONLY R 0 BY.
3 . STEVE WILLS

Vagrant (https:/wwail¥agrantup.com/) is a

command-line utility for building and managing

portable development environments such as

virtual machines (VMs). It creates, starts

up, provisions, and destroys VMs easily.

1o
:

[N

It is often used as a tool for setting up

S . O
e X

)
L

o s e ot R development and test environments

such as on a laptop.

RANT

agrant allows you to set up these environments in an
automated and reproducible way, which ultimately

increases productivity and allows you to share these auto-
mated environments with others. Vagrant, written in Ruby
(https://www.ruby-lang.org/), is a cross-platform utility. It eas-
ily runs on Mac OS, Windows, Linux, and FreeBSD. By sup-
porting multiple hypervisors—including VirtualBox, VMWare,
Bhyve (with some work)—as well cloud hosting—such as
Amazon AWS, Google Cloud Compute, Azure, and many
others—Vagrant offers a lot of flexibility. In terms of provi-
sioning or initial VM setup, it supports a variety of tools, such
as Ansible, Chef, Puppet, Salt, and even shell scripts.

Hypervisor and provisioner support is provided by plugins,

so end users can easily develop plugins for particular
providers or provisioners. There are many plugins available
(https://github.com/mitchellh/vagrant/wiki/Available-Vagrant-
Plugins).

Why Use Vagrant?

You can create Vagrant environments and easily
share them with your coworkers regardless of
which OS they use on their laptops or desktops.
And you can bring up a single or multi-host setup
with a single vagrant up command. By making
development environments reproducible, you can
avoid the common "works on my machine" type
of problem.

Vagrant is typically used on laptops or desktop
workstations for setting up development and test
environments, but it can be used elsewhere. For
example, one interesting use case is for creating
build nodes or temporary hosts for automated
build environments or tools such as Jenkins.
Generally, Vagrant is used by software developers
or testers. It can be useful for operations folks, too,
such as for modeling production environment
setups.

Vagrant is a very useful tool meant for repro-
ducible, ephemeral development and testing envi-
ronments. However, it is not meant for managing
production hosts with critical data. Vagrant's sim-
ple design makes it far too easy to destroy every-
thing you have created with it for that type of
usage.

How to Get Vagrant

You can install Vagrant on FreeBSD using the com-
mand pkg install vagrant. This will install
Vagrant and all of its dependencies. You will also
want to install a hypervisor. For the purposes of
this article, | will demonstrate both VirtualBox and
Bhyve as hypervisors. To install VirtualBox on
FreeBSD, use pkg install virtualbox-ose.
Be certain to follow any instructions about system
setup that are listed.

Components of a
Vagrant Project

There are two main components to Vagrant envi-
ronments. The first is what is called the Vagrant
"box". This is the wrapper of a disk image contain-
ing an installed guest OS and meta-data about
that disk image and OS. Users can create these
themselves—manually—and share them or use
pre-created boxes created by other users or
groups. Prebuilt boxes can be found at
https://atlas.hashicorp.com/boxes/search. The
vagrant command will search this location by
default for boxes that do not already exist locally.
Boxes can be manually added to the local Vagrant
cache using the vagrant box add command,

such as in the following example:

vagrant box add hashicorp/precise64
You can list cached boxes with
vagrant box list.

The second main component is the
Vagrantfile. This file lists the VMs that are in
your Vagrant project and how to set up those
VMs. While the Vagrantfile is written in Ruby, edit-
ing it does not require extensive knowledge of
Ruby. It is intended to be simple. More information
on the Vagrantfile is available at
https://www.vagrantup.com/docs/vagrantfile/.

The Vagrantfile also serves to mark for Vagrant
where the root of your project lives. This helps
Vagrant find other files that may be referenced in
the Vagrantfile using relative file reference.

Setting up a Project
The simplest way to set up a project is to run the
following command:

vagrant init hashicorp/precise64

This will create the Vagrantfile in the current
directory. Next run:

vagrant up

This command will download the box to a local
directory (~/ .vagrant.d/boxes/ by default)
and start up the VM. After this, you can run:

vagrant ssh

to ssh into the VM and begin using it. When
you are done, you can stop the VM using:

vagrant halt

Or if you want to get rid of the VM completely,
run:

vagrant destroy

This will properly remove the instance of the VM
with its local changes, but leave the cached copy
of the box in ~/.vagrant/boxes/.

In our example VM, notice we did not specify
any provisioning or configuration steps. We can
add steps to the Vagrantfile to configure the VM.
For example, uncomment these lines in the

March/April 2017 | 23

24

Vagrantfile:

config.vm.provision "shell", inline: <<-SHELL
apt-get update
apt-get install -y apache2

SHELL

The next time you run vagrant up or vagrant provision, Vagrant will run the apt-get com-
mands to install the Apache web server.

More information on provisioning is available at https://www.vagrantup.com/docs/getting-started/
provisioning.html.

One interesting feature of Vagrant is the synced folder feature. It will sync files to and from the host
operating system to the guest operating system, making it easier, for example, to edit code you want to
build or run in the VM. The VM has a default network connection that allows connecting to the VM with
ssh. You can add additional port forwards to the VM on any additional ports needed.

Creating a New Vagrant Project
As an example, we will create a new Vagrant project running a web server. The first step of creating a
new Vagrant project is creating a new directory and running vagrant init in that directory.
For example:
mkdir journal
cd journal
vagrant init freebsd/FreeBSD-11.0-RELEASE-pl
This will create a Vagrantfile in our new directory. Note that we will want to make a number of
changes to this default file before using it. Due to defaults of Vagrant, you will want to add the following
line to our new Vagrantfile:
config.vm.guest = :freebsd

Also, due to a bug in the FreeBSD box (for which a fix is available and will be committed soon), you
will need to add the following line to the new Vagrantfile:

config.vm.base mac = "080027FC8C33"

To avoid a boot timeout during the first boot, as the system performs its first boot update, we need to
add the following line to our Vagrantfile:

config.vm.boot timeout = 3600

There is another change to make before we can try to initialize our box, as we need to disable the
default shared folders:

config.vm.synced folder ".", "/vagrant", id: "vagrant-root", disabled: true
Also, we'll want to expose a port for our web server by adding this line:

config.vm.network :forwarded port, guest: 80, host: 8080

And, since we do not have bash installed by default on FreeBSD, we need to configure Vagrant to use
sh as its ssh shell:

config.ssh.shell = "sh"

The default amount of RAM specified is 512MB, which we should increase to 1GB. And we will allo-
cate two CPUs to the VM:

FreeBSD Journal

config.vm.provider :virtualbox do |vb|

vb.customize ["modifyvm", :id, "--memory", "1024"]
vb.customize ["modifyvm", :id, "--cpus", "2"]
end

config.vm.provider :bhyve do |vm|
vm.memory = "1024M"
vm.cpus = "2"

end

Notice how we have separate blocks for each hypervisor provider. Let's also add additional disk to the
VM for use with ZFS. This will be hypervisor specific as well. In the section for virtualbox, we add:

file to disk = File.realpath(".").to s + "/extradisk.vdi"

if ARGV[0] == "up" && ! File.exist?(file to disk)
vb.customize |
'createhd’,
'--filename', file to disk,
'-—-format', 'VDI',
'--size', 3 * 1024 # 3 GB
]
end
vb.customize [
'storageattach', :id,
'--storagectl', 'IDE Controller', # The name may vary
'--port', 1, '--device', 0,
'-—-type', 'hdd', '--medium',
file to disk
]

And in the section for bhyve, we add:
vim.disks = [{name: "extradisk", size: "3G", format:"raw",}]
Our next step is to install the web server process and ensure that it is running.

config.vm.provision "shell", inline: <<-SHELL
pkg install -y apache24
sysrc apache24 enable=yes
service apache24 start

SHELL

So, our Vagrantfile, minus comments, should look like the following:

Vagrant.configure("2") do |config]
config.vm.box = "freebsd/FreeBSD-11.0-RELEASE-pl"
config.vm.guest = :freebsd
config.vm.base mac = "080027FC8C33"
config.vm.boot timeout = 3600
config.vm.network :forwarded port, guest: 80, host: 8080

config.vm.synced folder ".", "/vagrant", id: "vagrant-root", disabled: true
config.ssh.shell = "sh"

config.vm.provider :virtualbox do |vb|
vb.customize ["modifyvm", :id, "--memory", "1024"]
vb.customize ["modifyvm", :id, "--cpus", "2"]
file to disk = File.realpath(".").to s + "/extradisk.vdi"

CODE CONTINUES NEXT PAGE March/April 2017

25

CODE CONTINUED FROM PREVIOUS PAGE

if ARGV[0] == "up" && ! File.exist?(file to_ disk)
vb.customize |
'createhd’,
'--filename', file to disk,
'——format', 'VDI',
'--size', 3 * 1024 # 3 GB
]
end
vb.customize [
'storageattach', :id,
'--storagectl', 'IDE Controller', # The name may vary
'--port', 1, '--device', 0,
'-—type', 'hdd', '--medium',
file to disk
]

end

config.vm.provider :bhyve do |vm|

vm.memory = "1024M"

vm.cpus = "2"

vm.disks = [{name: "extradisk", size: "3G", format:"raw",}]
end

config.vm.provision "shell", inline: <<-SHELL
pkg install -y apache24
sysrc apache24 enable=yes
service apache24 start
SHELL
end

Now we can start our VM using vagrant up. When Vagrant creates and starts our VM, it creates it
as a headless VM that is not visible. You may want to open the VirtualBox Manager so that you can see
the VM in the VM list. You can also click the VM and then click the "Show" button to see the VM con-
sole. While the shell provisioning script is running, we can view the output of the commands. After this
finishes, we should be able to bring up the default website:

http://localhost:8080/

To access the box, you can ssh in using the previously mentioned vagrant ssh command.

Existing Projects
One of the strongest powers of Vagrant comes from using the automation to create boxes and

Vagrantfiles and sharing them with other users. So, let's look at some existing projects. Note these exam-
ples were tested with the VirtualBox hypervisor.

Minio

Minio (https:/minio.io/) is a "distributed object storage server built for cloud applications and devops."

It is compatible with Amazon's S3 and can be pretty useful. For this example, | have created a Vagrantfile
that uses Ansible to configure Minio in FreeBSD. First, install Ansible by running pkg install ansible;
then clone or download this project (https://github.com/swills/minio.vagrant). You can then run the
vagrant up command and have a working Minio server with just a few simple commands.

mkdir minio

cd minio

git clone https://github.com/swills/minio.vagrant.git
vagrant up

FreeBSD Journal

The vagrant up step will take a few minutes, as the FreeBSD VM does an automated
freebsd-update on first boot. After it finishes, ssh into the VM and get the authorization keys for
Minio by running vagrant ssh. Then in the VM, execute the following commands:

sudo grep accessKey /usr/local/etc/minio/.minio/config.json
"accessKey": "KO2E80M9H87CDIJKP6Al",

sudo grep secretKey /usr/local/etc/minio/.minio/config.json
"secretKey": "2mMkACOoq7v80oUrzqZzs3+S9gRwgNLws5MZTNjgnE"
You can then login to Minio at:

http://localhost:9000/minio/login

You will need to use the accessKey and secretKey found in the VM. (These are generated at the time
the service is first started and will vary.)

Gluster

GlusterFS (http://www.gluster.org/documentation/About_Gluster/) is a free software parallel distributed
filesystem, capable of scaling to several petabytes. Similar to the previous example, I've created a
Vagrantfile that uses Ansible to configure Gluster on a pair of FreeBSD VMs. You can clone this project
(https:/github.com/swills/okapi) and run vagrant up to get started.

mkdir gluster

cd gluster

git clone https://github.com/swills/okapi.git
vagrant up

Next, run the vagrant ssh serverl command. Once you are in that VM, run the following
command:

sudo gluster peer probe server2

sudo gluster volume create gv0 replica 2 serverl:/gluster/gv0 server2:/gluster/gv0
sudo gluster volume start gv0

sudo gluster volume info

sudo mount glusterfs serverl:/gv0 /mnt

That will set up Gluster. Then you can vagrant ssh server2 and in that VM run:
sudo mount glusterfs serverl:/gv0 /mnt

From this point, you should have a working Gluster cluster. Any file created or modified in /mnt on
one should be available in the other. (The gluster commands are run manually so that they happen
after both machines are up.)

Poudriere

Finally, and perhaps of particular interest to anyone interested in doing FreeBSD ports development, there
is a Vagrantfile and set of Ansible scripts that will set up a complete poudriere development environ-
ment. This includes a complete ports tree for doing ports development and multiple jails for testing
builds. Note that setting up this one will take significantly longer to provision and will require more disk
space due to the jail build process and the ports tree checkout.

mkdir poudriere vagrant

cd poudriere vagrant

git clone https://github.com/swills/gerenuk.git
vagrant up

March/April 2017

21

28

After this finishes successfully, you can vagrant ssh into the VM and work with ports and run
poudriere to test builds. You can edit files in /usr/local/poudriere/ports/default and
build them using standard poudriere commands, for example:

sudo poudriere bulk -j 110-amd64 shells/zsh
The provisioning scripts have also set up NGINX to serve the poudriere statuspages at:

http://localhost:10080/

Using Vagrant with Bhyve

Vagrant can be used with Bhyve via a project called vagrant-bhyve (https:/github.com/jesa7955/vagrant-
bhyve) that was created during the Google Summer of Code project in 2016. In order to use it, you will
probably want another project that helps convert VMs to formats that vagrant-bhyve can understand,
called vagrant-mutate (https:/github.com/sciurus/vagrant-mutate). You can install both on FreeBSD by
running:

pkg install rubygem-vagrant-bhyve rubygme-vagrant-mutate

After installing the plugin as we did above, we need to ensure vagrant is using it by running the fol-
lowing commands:

vagrant plugin install vagrant-mutate
vagrant plugin install vagrant-bhyve

As mentioned previously, we can list currently locally cached boxes with the vagrant box list
command. Our output might look like this:

freebsd/FreeBSD-11.0-RELEASE-pl (virtualbox, 2016.09.29)
hashicorp/precise64 (virtualbox, 1.1.0)

We can use vagrant mutate to convert these boxes for use with Bhyve. To convert the box, use
the following commands:

vagrant mutate ubuntu/xenial64 bhyve
vagrant mutate freebsd/FreeBSD-11.0-RELEASE-pl bhyve

We can now create a VM using our previously generated journal Vagrantfile by doing the following:
vagrant up --provider bhyve

This will, as always, update on first boot, so it may take some time. Due to the automatic reboot
after update, the VM will shut down and Vagrant will indicate that the VM failed to come up, but if you
rerun the vagrant up --provider bhyve command, it should work fine. After this, you can run
the provisioning step by running vagrant provision. And then, just as when we were using
VirtualBox, ssh in via vagrant ssh. The vagrant-bhyve plugin does not currently support setting up
the port forwarding, so that will have to be done manually in this case. You can view the console of the
VM by running the cu -1 /dev/nmdm0B command.

Conclusion

| hope you enjoyed this brief tour of Vagrant, and, when you try it out, | hope you find it as useful as | do!

STEVE WILLS is a husband and father living in North Carolina. He is a FreeBSD ports
committer with a focus on Ruby and other programming languages.

FreeBSDJournal

