
Yes, CFEngine
C A N M A N A G E T H A T

S E E
T E X T
O N L Y

Configuration management is, as you might have guessed, currently a hot topic in IT.
With the advent of people spinning up VMware guests by the dozen and anoth-

er 50 instances in AWS for good measure, it’s become more of a necessity
than ever before. Once a setup with 200 environments on 2 dozen hosts

(because jails really are that great) was considered a large environ-
ment. It was also something a pair of skilled system administra-

tors could easily maintain, because they built every one of
those environments. Sure, you had lots of one-offs, but

you could easily track them with a text file here
and a post-it note there. (Do not disable pass-

word logins on clx9oa because they
access that from the AS/400.)

8 FreeBSD Journal

By
Phillip R. Jaenke

These problems are certainly not new or
unknown. The scope and scale have changed
tremendously over the years, but the notion
that setups like this exist and cause untold num-
bers of WTF-o’clock calls is almost as old as a
moth in the relay. A gentleman doing a post-
doctoral fellowship at Oslo University College
realized that this was a real problem, so he
became a monk instead—wait, no, that’s just
what a lot of us wished we could do. Instead,
Mark Burgess decided to come up with a solu-
tion, and, in 1993, released the very first itera-
tion of CFEngine.

Next to shell scripts and post-it notes on the
monitor (and maybe some obscure offering
from IBM), CFEngine is the oldest and most
mature of all configuration management solu-
tions out there. And not by a little, either. The
next oldest you’ll find discussed in this issue is
Puppet, the initial release of which occurred 12
years after CFEngine. And immediately, those of
us who have been down the single glass of pain
and “mature solution” road cringe at the horror
of 1990’s legacy C.

While it’s true that CFEngine is written in C,
it’s for portability and performance reasons.
Other configuration managers are primarily or
exclusively based around their own code and
the general concept of configuration manage-
ment. CFEngine’s longevity has come about
because it is based around two key concepts:
convergence and Promise Theory. Rather than
say “things are bad, make them all the same in
an easy fashion,” Mark Burgess sought to
understand the ad hoc choices that had been
made initially and a method for understanding
those choices.

You can read about all that on Wikipedia of
course. But that is the nuts and bolts of why
CFEngine has given users a consistent and sta-

ble set of expectations and behavioral concepts
for more than two decades and two complete
rewrites. Because it is an implementation of
concept and theory, the details of how it does
so are far less important.

A Useful Hello World in
CFEngine
Because CFEngine uses bidirectional communi-
cations (agent and server model) and is specifi-
cally targeted at heterogeneous environments,
our example here will show you how to use
CFEngine’s Domain Specific Language to write a
‘Hello, World’ promise that tells you a bit about
the system as well.

To start, you need to understand how the
process works. First, you use your policy files to
define the desired state. The agent then ensures
the state (every 5 minutes). Then the server may
optionally verify the desired state, if you’re using
CFEngine Enterprise. ObPlug: Enterprise is com-
pletely free for up to 25 hosts, but unfortunate-
ly requires your policy hub be Linux.

The Promise

This promise establishes a bundle called
‘hello_world’ that will report on any class of
hosts. Now we’re going to do something a bit
more elaborate leveraging CFEngine’s built-in
classes, called hard classes: (next page)

These days, “large” environments start at about 20,000 hosts and only go up from
there. As you might imagine, no amount of skill will ever make up for that kind of vol-
ume. And these environments often go back more than a decade. It is guaranteed that
at some point you will poke your head into a troublesome host only to find out that
it’s a Sun E420R running Solaris 2.5.1, despite the company having standardized on
FreeBSD and Windows more than a decade back. Also, it’s the one singular system
storing your entire login database—for all the employees and customers.

March/April 2017 9

This is a CFEngine Hello World Promise
bundle agent hello_world
{

reports:
any::

“Hello World”;
}

10 FreeBSD Journal

This policy will do two additional steps. If the
system is a member of the FreeBSD hard class, it
offers a different greeting from a windows mem-
ber, while all others offer the default greeting.
Let’s see this policy in action on two different
hosts now.

As you can see, CFEngine’s class mechanism is
actually quite easy to understand and leverage.
This enables you, as the person in charge of pre-
venting chaos, an easy and reliable means to dif-
ferentiate your hosts within your policies. Because
you can also use promises to define soft classes
by virtually any means you like, this gives you a
combination of flexibility and consistency that
many other configuration management solutions
often lack or make difficult to implement.

But as with most Hello World examples, this
barely scratches the surface of the capabilities
available.

Promises and Policies and
Bundles, Oh Why?!
When you work with CFEngine, you might be
editing files, but those files are inextricably linked
to the core concept of Promise Theory. The gist of
Promise Theory is that autonomous actors will
achieve voluntary cooperation, which sounds

about as far from actually doing configu-
ration management as you can possibly
get. Words like “voluntary” and
“autonomous” and “cooperation” sound
weird in this context.

So, to start, let’s break down what
Promise Theory really is. As you might
have guessed, Mark Burgess proposed it
as a method of solving problems in obli-
gation-based schemes for policy-based
management (or more accurately, to
explain CFEngine’s operational model).
Rather than have configuration directives
dictated from a single server or single

group of authoritative servers, every member in
the group has autonomy of control. That is, they
can’t be forced into specific behaviors by deter-
ministic commands. Instead, the agent can only
make promises about its own behavior and no

other system’s behavior.
CFEngine agents are

not slaving themselves to
a single central server, but
rather, an agent promises
to retrieve data and act
on instructions from
another server. A good
analogy would be a typi-
cal everyday occurrence
on the job. Your intern
promises he will fix the
problem on all 50 systems
if you tell him how to do
it. You give the intern a
list of basic steps—edit

these files, restart these daemons. The intern then
performs the steps exactly as you wrote them.
Because he is an intern, you then verify that the
results are what was desired. That is an (admitted-
ly very simplified) example of Promise Theory in
action.

You’re not cooperating due to any explicit obli-
gation or requirement aside from wanting the sys-
tem in a specific state; an intern does not make
any promises about any actions besides his own;
you do not sit there watching over the intern’s
shoulder or enter the commands for him—you
simply tell the intern what you want him to do;
the intern reports back only the specific informa-
tion he directly knows; you then validate the
instructions had the desired result. I know the
whole “intern volunteering and actually under-
standing what he did” part is probably farfetched,
but you get the point.

Now imagine an army of helpful, cooperative,
knowledgeable interns. That’s pretty much the
CFEngine model. Thousands of interns asking

Fancy CFEngine Hello World Promise
bundle agent hello_world_freebsd
{

reports:
any::

“Hello World”;
freebsd::

“Thanks for reading FreeBSD Journal!”;
windows::

“I think I got lost.”;

}

root@freebsd11 # /var/cfengine/bin/cf-agent --no-lock --file
./hello_world.cf --bundlesequence hello_world_freebsd
R: Hello World
R: Thanks for reading FreeBSD Journal!

[root@centos7] # /var/cfengine/bin/cf-agent --no-lock --file
./hello_world.cf --bundlesequence hello_world_freebsd
R: Hello World

root@freebsd11# /usr/local/sbin/cf-agent --no-lock -D windows --file
./hello_world.cf --bundlesequence hello_world_freebsd
R: Hello World
R: Thanks for reading FreeBSD Journal!
R: I think I got lost.

root, “Hey, what do you want me to do? Okay,
did it, here’s the result.”

Having an understanding of that, it becomes
much easier to understand how promise, policy,
and bundles fit together in CFEngine. In the sim-
plest terms, a policy is a collection of promises. If I
have promises called “abc” and “123”, I can then
combine them into a policy called “321cba” that
incorporates both of those promises. If you apply a
policy with no promises, nothing will happen.

Our Hello World above is an example of a
promise. To incorporate that promise into a policy,
I would use a body statement with a bundlese-
quence like this:

A bundlesequence can be thought of as a poli-
cy. CFEngine will execute the promises contained
within the bundlesequence statement in order. I
can then use those promises to control the behav-
ior of other promises. For example, I might use a
promise that finds out if the system’s hostname
begins with the letters qa, and then installs a dif-
ferent sudoers file if that promise is true. I can also
place the hostname check entirely within the sudo-
ers promise itself.

But what is a bundle, and how does it fit into
things? Especially since we just said promises go
into policies! Well, a bundle is a means of collect-
ing similar or related promises into a single prom-
ise. For example, my policy may promise that any::
systems receive the bundle “standard_users”.
Within that bundle, I would then define appropri-
ate promises to cover each user and OS.

Bundles, in other words, provide a means to
make many promises based off a single policy
decision. The caveat of a bundle is that each
promise within the bundle cannot be treated as a
separate promise, which is to say that you cannot
reuse any of those promises outside of the bundle,
unless you make it a separate stand-alone promise.
You also cannot use it if all the promises need to
be checked before another bundle.

This makes bundles very useful for broad stroke
configuration items. But a bundle promise can do
everything a stand-alone promise can do as well.
So, those broad strokes can actually be extremely

system specific—such as setting the correct IP
address, registering it in Active Directory, or even
joining it to a cluster. It all depends on how you
write the promises themselves.

So How Do I Stand It Up?
As we just mentioned (and you probably noticed),
CFEngine is an agent-based architecture. Agents
will check in with a server—this server is called
your Policy Server. The Policy Server is the central
repository for not only all your policy files, but any
other file you want to distribute. Additionally, with
Enterprise, you can use it to distribute the

CFEngine binaries or pack-
ages to all your agent sys-
tems—automatically
selected by OS, version,
and endianness thanks to
hard classes!

Except for Enterprise
(called Nova Hub), which
has additional interfaces
and reporting tools, literal-
ly any system that can run
CFEngine can be a Policy
Server. There are only two

basic requirements. One, it must run a version of
CFEngine that is compatible with your clients. Two,
it must be able to hold any files you want to dis-
tribute using CFEngine itself. (Obviously if you pre-
fer to use HTTP/HTTPS distribution or NFS for large
files, you can cheerfully ignore this.)

Setting up your Policy Server is similarly simple
in the grand scheme of things. First, you will need
to build and install CFEngine from ports. Then,
build and install the corresponding CFEngine mas-
terfiles from ports. So, for 3.7 you would use
sysutils/cfengine37 and
sysutils/cfengine-masterfiles37.
Note that because of some quirks, CFEngine can-
not actually run from /usr/local so you will need to
first copy or symlink the binaries from
/usr/local/sbin/ to /var/cfengine/bin/.
Finally, enable CFEngine in your rc.conf and run
the command /var/cfengine/bin/cf-agent
--bootstrap --policy-server 127.0.0.1

You have now successfully built your Policy
Server!

Really, that’s it. You’re now ready to start writ-
ing your policies and connecting clients—which is
as simple as changing the IP address of the policy-
server argument you just ran above. CFEngine’s
communications are fully encrypted and automati-
cally handle all the hairy work of creating and
maintaining secure keys for you.

One of the things that often catches people off
guard about CFEngine is that clients are survivable.

March/April 2017 11

body common control
{

These are the promises we want the agent to act on
bundlesequence => { “hello_world_freebsd” };

}

bundle agent hello_world_freebsd
{
...
}

12 FreeBSD Journal

Let’s say you need to take your Policy Server
down to replace a failed DIMM. (And not
because Jr. SysAdmin Jimmy ran a random shell
script he downloaded off the Internet as root. By
the way, there is now an opening for a Jr.
SysAdmin.) But your environment keeps trucking
and keeps enforcing.

Because—as part of Promise Theory—
CFEngine agents are also autonomous nodes.
Once they have successfully bootstrapped, they
will continue to enforce the policy they have. If
the server should happen to be down, they’ll
shrug, say, “Well I don’t have a new policy,” and
keep enforcing what they have. They’ll try to
reconnect opportunistically of course, but they
won’t stop working.

As an example, let’s say your policy says that
root must have a password of r34lly$ecur3 and
the whole network goes down. Sensing opportu-
nity, Bob the Developer (we ALL have a Bob)
manages to boot from a CD and set the root
password to b0b0wnz! on a client because he
doesn’t like not being root. When that system
reboots, it will promptly record that somebody
screwed with the password, reset the password,
and tell the Policy Server, “Hey, somebody tried
to change this password,” as soon as it’s able.
Even if somebody yanks the Ethernet cable and
sets the switch on fire.

So About Those Policies…
There’s a reason I keep skipping over policies in
detail, and that’s because they truly are flexible in
CFEngine. Because every possible aspect of a sys-
tem can be expressed in a policy using domain
specific-language (DSL) (and nearly any state as
well), there is basically no limit to what you can
do in your policies.

Determining what you want to implement
through policies in your own network is some-
thing only you can decide (and hopefully without
the accountants looking over your shoulder).
That flexibility, of course, also makes it virtually
impossible to really explain or describe what you
can do. For every example, there are more than a
dozen other ways to do it.

Maybe you want to assign your FreeBSD sys-
tems classes based on a regexp against their
hostname using a policy—you can do that!
Maybe you want to do it statically instead—also
possible! The only real limit to what you can do
with CFEngine is your imagination (and the time
you want to spend writing policies). Simplicity is
usually the best answer, not because you can’t
do it, but because you can easily spend the rest
of your life doing nothing but banging away on

one policy.
Because of this power, most folks opt to also

implement one of the many excellent third-party
promise libraries to ease their workload. The
most popular ones are Neil H. Watson’s Evolve
Thinking library, Normation’s ncf library, and, of
course, the CFEngine Community Open Promise-
Body Library (aka cfengine_stdlib.cf) that you
already installed as part of masterfiles.

All of these libraries are implemented com-
pletely in CFEngine’s DSL, which makes them OS
agnostic. You use the same promise libraries for
every system regardless of release and OS.
Naturally, there are the usual caveats of CFEngine
version compatibility and some functions within
those libraries being OS-specific. But because
they are written in DSL, they will run on nearly
every OS with no changes, and will not run on
OSes they do not apply to.

So instead of wondering whether you can do
something in policy (you can!), the decision-mak-
ing process becomes about what should be
implemented in policy. Complete and utter mad-
ness, right? Making decisions based on what
suits your environment instead of what the ven-
dor of the week isn’t currently apologizing for
not actually delivering? What next, accommodat-
ing all those special snowflakes without breaking
everything? Oh. Right. I already mentioned you
can do that too.

So, let’s talk about a practical example: my
environment. I run FreeBSD, AIX, Linux, VMware,
HyperV, and Windows. It’s obviously a complex
environment to begin with, made more complex
by using NFSv4—so Kerberos is mandatory. I also
use automount for home directories, Jenkins, an
actual poudriere cluster (no, really!), <Insert
Mandatory Cloud Buzzword Here>, and Juniper
because—you know why Juniper.

When I stand up a new FreeBSD system, I use
a template in VMware that already has
cfengine37 installed. All I do is add the MAC
address for vnx0 to my policy that associates it to
a hostname. I bootstrap the agent with one com-
mand, and CFEngine does all of this for me:
• Kills dhclient and installs the correct
/etc/resolv.conf
• Configures the IPv4 address and defaultrouter
for vnx0 using DNS
• Configures the IPv6 address and default router
for vnx0 using DNS
• Installs the correct pkg repository configuration
and updates any packages from base
• Installs and configures the latest version of the
support packages I need—krb5, nss-pam-ldapd-
sasl, kstart, etcetera—that don’t belong in the
template

• Installs the correct /etc/krb5.conf and retrieves
the machine’s keytab using DNS
• Sets the root password to whatever it is this
month (or week, if I forgot it again)
• Installs the correct autofs script and enables aut-
ofs in /etc/rc.conf
• Sends me a report telling me that the system
successfully bootstrapped and detailing the con-
figuration

What happens after that? That’s my baseline
policy, so it keeps doing that. If I update the root
password promise on the policy server, it will
change the root password. If I change the IP
address in DNS, it will update rc.conf for me. The
real magic is that every OS gets the exact same
treatment, with the promise adjusted to fit based
on the class returned by the agent. (OK, also the
real magic is CFEngine on JunOS, but that’s
between just you and me.)

Because you can combine promises, bundles,
and policy into virtually anything, there is really no
limit to what you can do with CFEngine. There
may not always be an “easy” way to do it, but if
you can do it with commands on the OS, you can
absolutely do it with CFEngine.

There Are, of Course,
Drawbacks
No software is perfect, and CFEngine is certainly
no exception to this. Because it does have more
than two decades of history, there are some—shall
we say—legacy pieces and behaviors that must be
maintained intact for various reasons—usually the
reason being someone who is paying a lot of
money to CFEngine AS. It’s a valid reason—that
pays for it to stay open source, you know! But it
can cause headaches on modern systems when
you run into one.

It’s also less a foot-shooting gun, and more a
foot-shooting Gatling auto-cannon. There are cer-
tainly many ways to minimize the risk. However,
eventually, you’re going to make a mistake and
not catch it. Most of the time, the only impact is
the agents refusing to run your new policy
because it’s broken, and sticking with the previous
policy. And sometimes it’s rm -rf
/$EmptyVariable/*—which will get run in parallel
across your entire environment, usually in less
than 5 minutes.

Because CFEngine is so powerful and flexible, it
is also very easy to find yourself buried under the

March/April 2017 13

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

14 FreeBSDJournal

possibilities. Seriously, they’re just about limitless.
But there are also just as many ways to end up
with a sprawling mass of thousands of promises
in hundreds of files. I’ve personally seen setups
that rivaled /usr/src—but with a lot less organiza-
tion. Keeping up with what you need to do and
keeping the master files under control can feel
like competing interests.

And one of the largest drawbacks by far is that
FreeBSD is considered tier 2 by CFEngine. That
doesn’t mean they don’t support it—far from it,
thanks to the efforts of the port maintainers and
a handful of us users. However, when it comes to
function and feature, FreeBSD does not get all the
goodies that Linux does. You aren’t likely to run
into anything you can’t do, but cf-agent won’t
“automagically” report some monitoring data,
and you’ll have to spend more time writing your
own promises and bundles since the standard
promise libraries don’t prioritize FreeBSD.

I’d Buy This for a Dollar!
Where Can I Learn More?
Thanks to being one of the most mature and sta-
ble configuration management systems out there,
CFEngine has an absolute mountain of resources
available. The best place to start is the official
CFEngine site (where you can also grab glossies to
slip under the beancounters’ doors) at
www.cfengine.com. That’s also where you can
grab CFEngine Enterprise for the price of com-
pletely free (for up to 25 hosts). But as with any
product this complex and powerful, that’s just the
beginning.

If you’re ready to dive right in, Vertical
Sysadmin offers a series of training videos and
articles for the low, low price of completely free.
With some help from whoever signs the checks,
they also provide some of the best in-depth, one-

on-one training you can get. In fact, I would rec-
ommend everyone interested in CFEngine start
with their IT Automation with CFEngine: Business
Values and Basic Concepts video.

However, let’s be honest. Getting budget?
Right. Not getting budget. For that, CFEngine has
the help-cfengine mailing list. As you might
expect, you’ll see not only CFEngine Champions
regularly providing assistance, but also CFEngine
developers and employees. Just browsing through
the archives, you’ll often find the answer to your
question is already out there. And there’s also the
#CFEngine IRC channel on Freenode.

Once you’ve got your first policy written and
you’re starting to get comfortable, I highly recom-
mend reviewing the official Best Practices guides
before you get too far along. While heavily geared
toward Enterprise users, they cover everything
from how you should use version control for your
policy files to adjusting the policy for scaling to
thousands of hosts.

Happy promising! •

PHILLIP R. JAENKE is a systems
engineer and administrator who
also happens to do a bit more
than dabble in storage, network-
ing, and writing. He's been at it

long enough to have written checks to Berkeley
Software Design. When not busy keeping the lights
on at large enterprises across a variety of Unixes,
he chips into various open-source projects where
he can, including CFEngine and FreeBSD. He also
designs and engineers the widely-used
BabyDragon VMware reference whitebox, and
develops the TaleCaster comprehensive media
system.

Go to www.freebsdfoundation.org • 1 yr. $19.99/Single copies $6.99 ea.

SUBSCRIBE TO DAY
J O U R N A L

AVAILABLE AT YOUR FAVORITE APP STORE NOW

TM

TM

