
4 FreeBSD Journal

S E E
T E X T
O N L Y

reeBSD is famous for all sorts of fantastic
features, such as ZFS, jails, bhyve virtual-
ization, and the Ports Collection. It’s
somewhat infamous, however, for having

three different firewalls: PF, IPFilter, and IPFW.
Where did all these firewalls come from, and
why are they all still in the system?

The IT industry has repeatedly abused,
stretched, and tormented the word firewall to fit
all sorts of different products. When someone
uses firewall, ask them exactly what they’re talk-
ing about. Do they mean a caching HTTP proxy
like Squid or Varnish? A generic proxy like
relayd? Or a TCP/IP packet filter?

All of FreeBSD’s firewalls are packet filters.
They control which TCP/IP addresses and ports
can connect to the host. If your FreeBSD host
passes packets between interfaces, then the fire-
wall controls which traffic gets forwarded, which

gets silently dropped, and which is sent back to
the source with a letter of complaint. A packet-
forwarding packet filter is the original firewall.

The firewalls all have a common core feature
set considered the minimum for a modern pack-
et filter. They can track the state of a TCP/IP con-
nection and permit traffic based on existing con-
nections. They can all return resets or silently
drop connections. All can manage non-routable
addresses and perform network address transla-
tion. They all work with lists of rules defining
how to respond to traffic from different IP
addresses and network ports. Incoming packets
are compared to the list of rules until they are
permitted or rejected.

The firewalls have their own unique features,
however. How do you choose between them?

IPFW is the oldest FreeBSD packet filter, dat-
ing from 1995. IPFW maintains its rules in a

F
By Michae l W Lucas
FreeBSD’s Firewall Feast

numbered list. You add a rule to an existing ruleset
by giving it a rule number. Rule numbers range
from 1 to 65534. IPFW rules are very dynamic, and
can be altered programmatically. Numbered rules
do impose some limits, however. Every time I
design an IPFW ruleset, I eventually wind up having
to renumber the rules because, somehow, I need
to cram too many rules in between two other
rules. This is a limitation of my imagination when
creating my ruleset, though, not any
limitation in IPFW.

The most interesting unique feature
in IPFW is dummynet, which lets you
selectively degrade traffic. Why would
you want to make a connection
worse? Well, for one thing, it’s kind
of fun to simulate an ADSL link to the
moon. But the ability to impose
excess latency and bandwidth limita-
tions on a connection can save a
global organization days or weeks of
time and thousands of dollars in developer travel
expenses. More than once, I’ve set up an IPFW
box to simulate a connection from the other side
of the world, or with multiple profiles to simulate
several different countries. A user in South Korea
with a gigabit Internet line will have a very differ-
ent experience than a user who’s closer but has
less bandwidth. Dummynet lets you simulate their
experience locally.

IPFW also has the highest performance of any
FreeBSD firewall, although that only becomes
apparent at tens of gigabits per second.

IPFilter, or IPF, is a platform-independent firewall,
and came to FreeBSD in the late 1990s. You can
use IPFilter on FreeBSD, Solaris, SunOS, HP-UX,
NetBSD, OpenBSD, and Linux. It has a configura-
tion syntax similar to PF. If you must run one fire-
wall across multiple operating systems, IPFilter is
for you.

IPFilter is not in active development, but it can
block, permit, and translate packets. It’s largely
feature-complete.

PF is the newest FreeBSD firewall, and is quite
popular among younger sysadmins. It originated
with the OpenBSD project, as their replacement for
IPFilter. It’s quite popular among younger sysad-
mins who didn’t grow up with IPFW.

PF is perhaps the most popular FreeBSD firewall.
PF has a simpler configuration syntax than IPFW.
While you can alter the ruleset programmatically,

you must configure the ruleset to permit such
alterations. While mailing list archives discuss occa-
sional problems, such as handling IPv6 fragmenta-
tion, those issues were solved years ago.

While FreeBSD’s PF originated with OpenBSD,
that import happened several years ago. FreeBSD’s
PF has diverged from the original import, and
OpenBSD’s PF has continued its natural evolution.
Chances are that the two will continue to diverge.

When you’re studying PF configuration, be sure
that you use documentation relevant for FreeBSD,
not current OpenBSD documentation. The chances
of FreeBSD taking a new import of OpenBSD’s PF
are very slim. PF is also incompatible with the vim-
age virtual networking stack used by jails.

All this information is nice, but which should
you choose? That depends on your environment.
Most sysadmins with small servers will find PF’s
simplicity a win.

If you want one firewall software across multiple
Unix-like operating systems, use IPFilter.

If you need to pass tens of gigabits per second,
simulate a bad connection, have unlimited ability
to programmatically alter rules, or require
advanced jail networking, use IPFW.

If you already have one deployed, of course,
keep using it. They all work fine for the essential
firewall task of filtering packets. Combined with an
application proxy or cache such as Squid, relayd, or
varnish, FreeBSD can go head-to-head with any
commercial firewall vendor and win. •

MICHAEL W LUCAS is the author of
several books on FreeBSD, including
Absolute FreeBSD and the FreeBSD
Mastery series. Learn more at
www.michaelwlucas.com.

All this information
is nice, but which

should you choose?

May/June 2017 5

