
26 FreeBSD Journal

By Roberto Fernández

S E E
T E X T
O N L Y

SDBS
GAMING

ECURITY has been discussed a lot over
the years, particularly when focusing on
protecting customers’ data. That data
can be simple data, such as an email

address or a user-name, or more elaborate data
like a password used to decrypt the shopping
done by a customer in an online shop. These
services are usually based on data protection and
do not ensure that the hardware or software
being used is what is actually delivered. In the
case of servers, it is useless to talk about hard-
ware protection because only the system adminis-
trator should have physical access to those

machines.
In the gaming industry, we have software and

hardware, both of which must be checked to
ensure that the delivered product has not been
manipulated. For example, manipulation could be
done by changing some of the product’s hard-
ware components or by inserting a way to bypass
the protection mechanism implemented on it.

In addition to a hardware intrusion detection
system, it is highly recommended that the soft-
ware developed for the product also have some
kind of protection. FreeBSD offers several tools
for that, starting with encrypting the disk on

IF YOU HAVE BEGUN READING THIS, IT PROBABLY MEANS YOU
ARE INTERESTED IN SECURITY OR IN EMBEDDED SOFTWARE OR YOU
WORK IN THE GAMING BUSINESS. IN ANY CASE, PLEASE PUT ASIDE

YOUR ANTIPSYCHOTIC MEDICATION RIGHT NOW, BECAUSE WE NEED
YOU IN YOUR MOST PARANOID STATE, READY TO WEAR THE TWO

HATS OF SECURITY, THE BLACK ONE AND THE WHITE ONE.

S

May/June 2017 27

which the programs are installed and ending by
detecting whether they were somehow changed.

We should not forget that not every single piece
of code will be used in a gaming system. For
instance, freebsd-update(8) could be used or
not. If you are not using something, it could be a
security risk for the system if it is left on a release
version. If you do use it, then you have to control
which security issues affect your software and how
patches could be applied to the system.

But there is more to it than just protecting hard-
ware or software. As a gamer, I am only concerned
that the data I saved do not get lost. When I save
the progress I made on a game, I would hate to
see that get lost and require me to redo what I
had already done. Imagine that you have finally
gotten over a scene that took maybe five hours to
get through, and then the saved point was lost.
Would you be “happy” or would you want to tear
apart your console?

BUILDING IT AS EMBEDDED
The best way to make sure your software has as
few security holes as possible is to use YAGNI (You
aren’t going to need it). Although this is a tech-
nique for writing high-quality code, it could be
used here to inform you if a program or a library is
not going to be used and thus keep you from
including it.

To get a better understanding of how this is
accomplished, the building section is divided into
three parts: building the world, building the ker-
nel, and building ports.

Building the World
There are two ways to accomplish this:

• Build everything and install something.
• Build only what you need.
The first axiom implies a full build with well-

known commands:

And after its completion, all the items go into
the final system with a shell script. This is a way to
start if you do not want to mess around with the
FreeBSD build process. An optimization technique
for this process is to write a src.conf(5) file
and set the SRCCONF variable in your environ-
ment. By doing that, your build process could

boost up a lot, depending on how many of the
settings are left out of the build process.

The second axiom requires the development of
a build variable like the ones from src.conf(5).
Explaining this fully would require an entire article
in and of itself, and it is not the main focus here.
With proper implementation of the variable, the
build process could be sped up by 50% and thus
avoid long waiting times.

Building the Kernel
Inside the kernel configuration file, there are a lot
of devices and options that might never get used
on your machine. Examples are NFS options or
RAID devices. Again, if you do not need them in
your kernel, a new kernel’s configuration file
should be written without them in order to get the
kernel to run faster and, in case someone wants to
add hardware to the final product, to reduce the
security risk if it is not supported.

The kernel has already been configured to run
faster and contains support for the devices you
want, but that is not all there is to it. The boot
partition must not be encrypted (the last time I
checked, Allan Jude was not done with the geli
boot loader, at least in an automatic way to boot
without typing the password) and the
loader.conf(5) is saved there, which allows an
attacker to modify it and get support for the hard-
ware they want.

Building Ports
This is the trickiest question of all. We can build
the operating system in any version of FreeBSD
without messing around with your own build sys-
tem. But this does not work with ports. If you
want to get a set of programs or libraries from the
ports tree and install them into your product, you
need to do something else.

There are several techniques for this. The one
used to create packages that will be
used by the final user is
ports-mgnt/poudriere. This tool
creates a jail and builds the ports there
using the same version of the base sys-

tem. After building the ports and staging them,
you should write a script that is able to get only
the libraries and binaries you want. A simple way
is to write a file like the pkg-plist which is on
most of the ports and describes which compo-
nents must be installed on the real system. Then
the script mentioned before should read this file,

root@ASUS-R752L: /usr/src # make buildworld
root@ASUS-R752L: /usr/src # make installworld

DESTDIR=/work/target

28 FreeBSD Journal

fetch the libraries and binaries, and copy them
into your target bintree.

Right now, you have all you need to run your
gaming system, but there are a lot of security
reports for the programs that might be installed
on the product. They should be tracked down to
ensure that they do not affect your software and
that your product will not be compromised.

WRITING ATOMIC DATA
As explained previously, the data we write on disk
must be consistent, which means that the writing
must not be in an idle state where the data to be
read will be shown as corrupted and no longer
usable. There are several causes of data loss. The
first, and the most common in the gaming indus-
try, is hard shutdown. This means that the system
is not shut down by software, but by hardware
which causes the data to not be entirely written
on the disk.

FreeBSD has developed a way to ensure that
the data is consistent by writing it entirely or not
at all. The way to do this is gjournal(8).
Usually, it is easier and more comfortable to write
the data needed by the user in a non-encrypted
device or partition. That way the user can back up
saved games and a gamer profile, or copy this
information to bring it into another system. Also,
the support team can back up user data before
starting a reparation.

For this example, we will use a 1-TB hard disk
that contains only user data. The GEOM partition
scheme should look like the following:

In order to put some journaling into the
gpt/User-Data partition, which is set in a sys-
tem with 8 GB of physical memory, the following
commands must be run:

After that, the /dev/ufs/UserData entry
should be written in the fstab(5). It is impor-
tant to use that one and not the GEOM identifier
or the driver name, because it can cause the
wrong partition or device to be mounted.

PROTECTING VITAL DATA
One of the biggest worries in the embedded
industry is that proprietary software gets modified
or its behavior discovered. This is done to bypass
authentication methods implemented to deny the
execution of unknown software that allows an
attacker the use of modified data or, in the case
of the gaming industry, to play an illegal copy of
your software.

A simple way to protect your data is to encrypt
it with the cryptographic GEOM class, also known
as geli(8), where you select the programs to be
protected. You can encrypt the whole system or
only a partition where your programs are going to
be stored, so that in boot time, you can check if
any manipulation took place and decrypt this par-
tition if none have been taken. In either case, you
have to find a secure place to store your key. It
can be generated in runtime or stored in a chip
connected to your system, which, under certain
circumstances, will give you back the key.

The Trusted Computing Group has developed a
standard for this purpose—The Trusted Platform
Module or TPM, which is a chip that has, among
other things, a non-volatile memory where you can
write information and seal it with values stored in
the registers. Usually, the BIOS will calculate its own
checksum and the MBR’s and store them in the
TPM’s registers. After the system has completely
booted, the other registers can be written with
some calculated data to have access to the infor-
mation stored in the chip’s memory which holds
the key for decrypting the root partition.

If your platform is using a UEFI boot, then the
Secure Boot is an additional step that could be
used, allowing the machine to have a signed boot
process and to look for a manipulation on the
boot chain.

AUTHENTICATING
PROPRIETARY SOFTWARE
The authentication of proprietary software comes
after the machine has completely booted. The
simplest way to do this is to write in a file which
files must be checked and which signature they
must have, the same thing FreeBSD does with

root@ASUS-R752L: ~ # gpart show -1 ada1

root@ASUS-R752L: ~ # gjournal label -s 16G \
gpt/UserData

root@ASUS-R752L: ~ # ls /dev/ufs/UserData*
UserData UserData.journal
root@ASUS-R752L: ~ # newfs -J -L UserData

/dev/gpt/UserData.journal

34 1953525101 ada1 GPT (932G)
34 6 - free - (3.0K)
40 1953525096 1 UserData (931G)

1953525136 5 - free - (2.5K)

May/June 2017 29

release files (installation media).
Another way to do it is to write a program that

reads from a binary file using a defined protocol
and checks whether the programs were somehow
altered. This version requires a thorough under-
standing of authentication methods and how to
calculate checksums of binary files.

But what is interesting right now is not how to
detect a manipulation in your software, but what
to do when you detect one. As an example,
Microsoft® bans the users who tried to use a
backed-up copy of a game in a Xbox 360® from
the online service. It prohibits the users from
updating the system or downloading games using
that account. Thus it leads the user to create a
new one and replay all the games again in order to
restore the user’s online status as gamer.

That is ideal, but if what has been altered is
how the system works, then it is a good idea to
“forget” the key to decrypt the right partition, so
that the user will have a real expensive paper-
weight that will never boot again. It is worthwhile
to stop and consider the severity of the manipula-
tion and act accordingly. For example, it is not a
good idea to destroy the decryption key when the
user tries to play an illegal copy of your games
when the worst thing that can be achieved is play-
ing the game. On the other hand, if the manipula-
tion could cause the system to be used as a fraud
machine, then that option is the right call.

DETECTING HARDWARE
MANIPULATION
When installing the product, information about
the system can be obtained and stored on a file
that will be read after the system has booted to
check whether your hardware has changed. The
list of hardware attached to your machine and
where it is attached can be obtained by running
pciconf(8) and usbconfig(8), so you can
have control of which components are connected
via a PCI card and which ones are attached via USB
ports or HUBs.

Let’s consider an example. The first of the fol-
lowing scripts will get the information gathered by
pciconf(8) and usbconfig(8) and store it in
plain text under /var/db/hw with the names
pci.db and usb.db. The second will get the
information and compare it with the information
stored in those files. To get a better understanding
of the process, let’s remove a security layer (encryp-
tion, authentication, or other such mechanisms)
from the file and it will be stored in plain text.

If a TPM chip is installed on your product or the
UEFI Secure Boot has been selected, your BIOS has
already been checked and therefore there is no
need to check it again. The port
sysutils/dmidecode offers the option of
checking the vendor and version of the BIOS or
your motherboard if there is a SMBIOS or DMI
entry point. If dmidecode(8) does not work for
you, then you should find a way to read this infor-
mation as it will be worth it in the long run.

The machine’s processor is another thing that is
worth checking, and sysctl(8) is good enough
for this. By checking the node hw.model, the
model of the CPU is returned, allowing the product
to check its own processor and boot when it was
not changed at all.

INTERFACES
Up till now, we have talked about product. This
section explains the risks in connection with any

#!/bin/sh

[! -d /var/db/hw] && mkdir -p /var/db/hw
pciconf -l | sort | cut -d '@' -f1 |\

while read DEVICE ; do
echo ${DEVICE} | grep -q 'none' && continue

pciconf -lv ${DEVICE}
done > /var/db/hw/pci.db

usbconfig | cut -d ':' -f1 | sort | \
while read DEVICE ; do

usbconfig -d ${DEVICE} dump_device_desc
done > /var/db/hw/usb.db

#!/bin/sh

pciconf -l | sort | cut -d '@' -f1 |\
while read DEVICE ; do

echo ${DEVICE} | grep -q 'none' && continue

pciconf -lv ${DEVICE}
done > /tmp/pci.db

usbconfig | cut -d ':' -f1 | sort | \
while read DEVICE ; do

usbconfig -d ${DEVICE} dump_device_desc
done > /tmp/usb.db

test "$(comm -3 /tmp/pci.db /var/db/hw/pci.db)"
[${?} -eq 0] && exit 1
test "$(comm -3 /tmp/usb.db /var/db/hw/usb.db)"
[${?} -eq 0] && exit 1

exit 0

30 FreeBSD Journal

interface to the external world—for instance, the
network card. There are several known variations
of attack attempts, especially with regard to com-
munications with the external world. Let’s consid-
er them through the interfaces.

Network
Today, in the IoT (Internet of things) era, it is nor-
mal to communicate a system to the Internet, and
it does not matter if it is a toaster or a server. This
is a security risk for your product, and some
thought is required before connecting a device to
the external world. The question to ask is: why
must it be connected to the Internet and which
services should be allowed?

The product can be connected to the Internet
because there might be an online multi-player ver-
sion of your game or an update service required
by the system to keep it up-to-date with the most
secure version of the basic software. If only the
first condition is relevant, then the product should
forbid the user from using other services. But if
the product allows the user to have an HTTP
browser, then the browser must be configured to
deny pages that may compromise the product.

Another issue is the “man in the middle” prob-
lem, which asks how you secure your channel to
avoid the communication from being sniffed. Will
it use IPsec, SSL, TLS, or are you implementing a
new cryptographic layer for your communication?

I cannot really say which is better, because each

has advantages and disadvantages. It is the mis-
sion of the system developer to evaluate the
needs of the final product and to set the most
secure configuration.

USB
USBs are used for almost everything today. There
are adapters for hard disks, Ethernet or wireless
connections, webcams, touch screens, and serial
communications. One might think that the USB is
secure enough, but it depends on which upper
layer protocol you are using. If a program using
the libusb(3) library or a kernel driver is devel-
oped, it must be good enough to avoid memory
leaks or code injection.

Others
No two systems are identical, so I am not in a
position to say which interfaces should be protect-
ed and which not. But be paranoid, go through
the drivers that are needed, search for security
flaws, try to hack them and improve the drivers.
FreeBSD can use the help of system developers
working in the gaming industry to make it safer!

ROBERTO FERNÁNDEZ lives in Berlin, Germany,
where he has worked in the gaming industry for
two years and programmed with FreeBSD for
three years. When not spending time with his son
and wife, he plays video games.

Go to www.freebsdfoundation.org
1 yr. $19.99/Single copies $6.99 ea.

SUBSCRIBE TO DAY
J O U R N A L

AVAILABLE AT YOUR FAVORITE APP STORE NOW

TM

TM

