\

By Jonathan Anderson,
Stanley Godfrey, and Robert N. M. Watson

Capsicum [Wat+10] is a framework for principled,
coherent compartmentalization of FreeBSD applications.

tis principled in that it draws from a rich history in computer security concepts such as capabili-

ties, tokens that authorize their bearers to perform actions such as read from a file (using a file

descriptor as a token very like a capability) or call a method (using an object reference as a capa-

bility). Capsicum is coherent in that it applies clear, simple security policies uniformly across appli-
cations. It is not possible—as can be the case in other schemes—to restrict an application’s access to
one set of operations while leaving equivalent operations available for use. When we describe
Capsicum as providing principled, coherent compartmentalization, we mean that it allows applica-
tions to break themselves up into compartments that are isolated from each other and from other
applications. Just as privacy-friendly companies put their users’ data encryption keys out of their
own reach, Capsicum allows applications and their compartments to give up certain abilities in
order to protect other compartments, other applications, and—ultimately—their users.

However, a significant limitation of Capsicum today is that it only works when applications vol-
untarily give up the right to perform certain actions. It works with applications that understand
Capsicum and that have been modified to take advantage of it; up to now, Capsicum has provided
no mechanisms for confining applications without their cooperation. This is our long-term goal: to
put applications into sandboxes without needing to modify the applications themselves, such that

TOWARD OBLIVIOUS SANDBOXING WITH

Capsicum

any vulnerabilities in an application that are
exploited by attackers can have their damage con-
tained within an application’s memory and outputs
rather than granting full access to all of a user’s
data and activities. In this article, we describe
recent and ongoing work to advance this agenda,
pursuing the vision of protecting ourselves from
vulnerable applications whether they like it or not.

A Taste of Capsicum

Today, Capsicum allows applications to protect
themselves, other applications, and their users
from themselves via two mechanisms:
capability mode and capabilities.

Capability Mode

Capability mode is a way of confining a process to
stop it from accessing any namespaces that are
shared between processes such as the filesystem
namespace, the process identifier (PID) namespace,
socket-address namespaces, and interprocess com-
munication (IPC) namespaces (System V and
POSIX). Its only access to files and other system
objects is mediated through capabilities, which are
described below. Once a process enters capability
mode, it loses all ability to access these name-
spaces and it cannot leave capability mode (nor
can any processes forked from it from that point
on). This first crucial Capsicum concept creates a
strong isolation: if a process cannot open any
resources and holds no capabilities, it cannot affect
the operation of other processes or leave behind
any side effects. For applications to do any useful
work, however, some communications and/or side
effects are necessary. The key, from a security per-
spective, is to ensure that these interactions occur
in a controlled way.

Capabilities
The second crucial concept in Capsicum—the idea
of capabilities—allows applications to be granted
access to potentially-shared resources in a con-
trolled way. Capabilities, as described by Dennis
and Van Horn in 1966 [DV66], consist of an identi-
fier or address for an object together with a
description of the operations that may be per-
formed on that object using the capabili-

titioners: capabilities were central to the PSOS
design [FN79], which heavily influenced the design
of Multics [SCS77], which directly inspired Unix
and its file descriptors [RT78]. However, in the jour-
ney from capabilities to modern file descriptors,
something was lost in translation: the rigorous,
principled focus on capabilities as monotonic
encodings of security policy (i.e., having a set of
allowed operations that can be reduced, but never
augmented). The Unix focus on user IDs within
filesystems naturally led to an expansion of the role
of file descriptors, such that the set of operations
permitted via a file descriptor included operations
that are not expressed in the descriptor itself, but
are based on rights encoded in the filesystem. For
example, most Unix-like systems will allow a user
to open(2) a read-only file in a read-only mode
and then fchmod (2) it to be a writable file (see
Listing 1). This is an example of how file descrip-
tors place more emphasis on the identity aspect of
capabilities than on operations.

Capsicum capabilities restore to file descriptors a
rigorous focus on allowed operations. In FreeBSD
10 and later, every file descriptor is associated with
a set of explicit rights that define which operations
may be performed on that file descriptor. Outside
of capability mode, file descriptors are opened
with all rights to preserve traditional file descriptor
semantics. When descriptors are explicitly limited
or derived from other capabilities (e.g., via
openat (2) relative to a directory capability), only
those operations explicitly permitted by the capa-
bility may be performed using that capability. There
are capability rights that correspond to existing
open(2) flags such as CAP_READ and
CAP_WRITE, but there are also rights that make
formerly implicit privileges a matter of explicit
policy, such as CAP_SEEK, CAP_MMAP,
CAP_FTRUNCATE, and CAP_FCHMOD.

Capabilities are monotonic: the holder of a
capability may always give up rights associated
with that capability with cap_rights limit(2),
but new rights can never be added to an existing
capability. If a process in capability mode requires
access that it does not already have, it must
acquire it from another process that rightfully has
the authority to delegate it. Like all file descriptors,

ty. In Dennis and Van Horn’s model,
computation occurred within a protec-
tion domain (“sphere of protection”)
and accessed resources using an index

err(-1,

int fd = open('"my-data.dat", O RDONLY);
if (fchmod(fd, 0777) < 0)

"unable to chmod"); // usually doesn’t run!

into a supervisor-maintained C-list. This
model of userspace performing limited operations

on system resources via indices within kernel-main-
tained arrays should sound familiar to current prac-

Listing 1: File descriptors allow operations beyond those
directly expressed in a descriptor—in this case, a read-only
file descriptor is used to modify properties of the file.

May/June 2017

19

capabilities may be delegated from one process to
another via inheritance or IPC, but because of
their strong monotonic guarantees, capabilities
can be delegated with confidence: a capability
with CAP_READ can be shared with an untrusted
process in capability mode with the certain
knowledge that it cannot be used to fchmod (2)
the file or perform any actions other than
read(2). (The experimental implementation of
capabilities in FreeBSD 9 involved additional indirec-
tion: a struct capability that contained a set of
rights and a pointer to an underlying struct file.)

Why Capsicum?
Capsicum is a principled and coherent way to con-
struct compartments within applications. It is prin-
cipled in that it relies on a conceptually rigorous
mechanism to enforce clear security policies that
can be composed naturally due to the monotonici-
ty of capabilities. As Linden observed in his 1976
survey of OS security and reliability [Lin76], “a sin-
gle general protection mechanism that is used
without exception is better than a rigid one that
has many exceptions.” Capabilities map naturally
to many program requirements, as today’s soft-
ware is already structured around reference-like
access to files as objects with explicit methods.
Capsicum’s coherence is due to its “deep in the
kernel” implementation and its simple-yet-com-
plete definition of capabilities and capability
mode. Attempts to provide “shallow” system call
wrapping, exemplified by Provos's systrace
[Pro03], are unable to provide the atomicity guar-
antees that are critical for security policy evalua-
tion: policy enforcement is weakened when the
objects and operations seen by the kernel are
subject to races with the security policy that

shell

shell

application Sandboxed

compartment

| =
fork(2) | \-bl [flexecve(2) lu\-: ------- main()
T T /
rtid cap_enter(2)

| library paths

T
|

— 1

[/usr{/local])/lib

ESE

Fig. 1: Applications can compartmentalize
themselves by acquiring static resources from
global namespaces before calling cap_enter(2).

20

FreeBSD Journal

authorizes the operations on those objects.
Attempts to allow userspace processes to define
their own sets of “safe” system calls, as in Linux’s
seccomp-bpf [Cor12] or OpenBSD’s
pledge(2) mechanism [Chi15], can lead to
incoherent security policies that disallow one type
of access to system resources while permitting an
equivalent type of access via another path. This
can lead to an exposure of not-quite-sandboxed
processes to malicious data under a false sense of
security. In contrast, Capsicum’s kernel-defined
capability mode is both sufficient and necessary
to express isolation from global OS namespaces, a
coherent and easy-to-understand security policy.

The simplicity and dependability of capability
mode helps application developers use it effective-
ly, so long as their applications fit the simple model
of first acquiring resources and then computing on
them. (The section called Toward Oblivious
Sandboxing on page 21 contains a discussion of
more complex models.) Capsicum also requires no
privilege for an application to compartmentalize
itself, in contrast to approaches that rely on
mandatory access control (MAC) such as SELinux
[LSO1] or AppArmor [BMO6] or approaches that
rely on Linux namespaces [Bie06]. Such approaches
are accessible to applications with system-adminis-
trator support and/or setuid helper binaries, but
Capsicum can be applied to any program compiled
and run by any developer.

Compartmentalizing
with Capsicum

To take advantage of Capsicum, applications
(including forked children of main application
processes) call cap_enter (2) before they are
exposed to any untrustworthy data, e.g., network
requests. Once a process compartmentalizes itself,
it can begin performing potentially dangerous
operations such as parsing network traffic or user
input in the confidence that any malicious
exploitation will lead to, at worst, a corruption of
the process’s explicit outputs (files, network
responses, etc.).

This self-sandboxing approach works well
when a process is able to open all of the
resources that it needs before entering capability
mode. The most obvious resources to be opened
before compartmentalization are files and sock-
ets, but in a modern binary, even something as
simple as cat (1) or echo(1), dynamic linking
means that a set of shared libraries must also be
loaded before compartmentalization. As shown in
Figure 1, the runtime linker runs within a process,
sharing its address space and, on startup, its main
thread. Most simple applications only rely on the

runtime linker to find all their libraries on startup,
after which it's possible to enter capability mode
and let the runtime linker fix up dynamic symbols
as required from already-open library files.

Other static resources that a sandboxed compart-
ment might need to access include explicit files,
which can be pre-opened by an application before
calling cap_enter(2) or accessed via a pre-
opened directory descriptor and then accessed by
the compartment with openat (2) and related sys-
tem calls (fstatat(2), renameat(2), etc.).
Implicit resources include locale files that are
required by many libc functions, but these can also
be pre-opened and their results cached. More
dynamic resources require a connection with the
outside world so that a sandboxed process can ask
an unsandboxed process to access new resources.
This mode of operation is commonly employed in
compartmentalized applications on many platforms,
including Web browsers and—perhaps surprising-
ly—all applications downloaded on MacOS through
the Mac App Store, where all applications request-
ing access to user files must go through a trusted
Ul called a powerbox [App16; Yee04]. To help with
these more dynamic applications’ requirements,
FreeBSD includes the 1ibcasper (Capability
Services Provider [Zab16]) mechanism to proxy
access to named services, some of which (e.g.,
system.dns) are provided by the system itself.

With pre-opened capabilities, locale cacheing,
directory descriptors, libcasper, and external prox-
ies at their disposal, many applications are able to
compartmentalize themselves with Capsicum.
However, this only applies to applications whose
authors are willing to spend the effort required to
adopt Capsicum features and adapt their applica-
tions for compartmentalization. More impact could
be attained if we were able to transparently sand-
box applications without imposing any additional
requirements on their authors, i.e., if we could
employ oblivious sandboxing.

Toward Oblivious
Sandboxing

With this goal of oblivious sandboxing in mind,
work on Capsicum has been progressing across
FreeBSD's runtime linker, a new library, and a new
capability-aware (but not feature-complete) shell.
Recently, some of these components have begun
to bear fruit, leading to an exciting new develop-
ment: the first transparent sandboxing of unmodi-
fied applications within Capsicum’s capability
mode. The applications that can be executed
today in this matter are very simple, but they exe-
cute without access to global namespaces and
without any modification: rather than sandboxing
themselves, they begin life in a sandbox.

exec (2) Without a Name

The traditional approach by which one application
executes another is to first fork (2) a child process
and then, from within that new process, to call
exec (2) and start running the new program. The
exec (2) system call cleans up the memory map-
pings of the current process, closes any file descrip-
tors that have an 0_CLOEXEC flag set (preserving all
other open files, together with current environment
variables) and transfers control to the new applica-
tion. In order to do this, exec(2) must first find
the binary to be executed. Looking up a binary by
name—as in the traditional exec(2) call—would
require access to the global filesystem namespace;
this is not permitted in capability mode. Instead,
FreeBSD provides the fexecve (2) system call to
execute a binary as specified by a file descriptor

(which can be a capability) rather than by pathname.

On Linux, fexecve(3) is a glibc function that
uses a file descriptor to look up a symbolic link in
/proc/self/£fd, then calls exec(2) with that
path name. The Linux implementation of Capsicum
required the addition of an execveat (2) system
call with true file descriptor semantics [Dry14].
When fexecve (2) runs, it inspects the file
passed to it to determine its type (ELF executable,
script, a.out executable, etc.) and passes it to an
image activator within the kernel (see Figure 2).
Image activators parse various types of executable
files and start running them; ELF image activators
(32- and 64-bit) encode knowledge of runtime
linkers and how to find them in the filesystem.

Application
41'(I execve(2) H fexecve(2) I—
ernel

y y

| sys_execve

kern_execve
A

| I sys_fexecve |

struct execsw {

_fp - "int (*ex_imgact)(...);
J

L4 const char *ex_name; N

}:

7/

7
imgact_elf.c ¢

exec___elfN_imgact

__elfN_open_path

(similar functions)

exec_new_vmspace |

Fig. 2: The FreeBSD kernel contains a number of image
activators to parse various types of executable files and

start running them.

May/June 2017

21

ELF header

e_ident[EI_NIDENT] e_type
e_machine “eye
e_shoff

e_phoff

Program header table

.p_type=PT_LOAD .p_type=PT_DYNAMIC

- .p_type=PT_INTERP .p_type=...

Section header table
.interp, .dynsyn, .plt, .text, ...

.interp
/libexec/rtld.so.1

Fig. 3: The ELF file format includes an explicit path
to the runtime linker that is expected to be used
as an interpreter for the binary file.

Although various ABIs for various platforms have
default runtime linker names, binaries can also
explicitly encode a path to a preferred runtime
linker, as shown in Figure 3. Whether discovered
via a program’s internal format header or the
default of an image activator, runtime linkers are
described using path names. In a conventional
exec(2) or fexecve(2) invocation, the run-
time linker would be looked up using this path
and executed first, before the main function of
the new application (illustrated in Figure 1). Inside
a Capsicum compartment, however, access to

capsh |

fork(2)

sandbox

ffexecve(2)

cap_enter(2)

application

_____ 7, main()

rtid

library dirs

rtld

libpreopen
L4 7
7 “: $ //

- 4

L~ 7/
[usr{/locall/lib L7
AN d
o
o //
n libxx | {2 ' P
e Fig. 4: By directly

- executing the runtime linker
with a new file-descriptor argument
and the LD LIBRARY PATH FDS
environment variable, capsh can execute an
untrusted program from within a Capsicum sandbox.
This application starts running without the ambient
authority to access global namespaces.

22| FreeBSD Journal

global filesystem namespaces is not permitted, so
another approach is required.

FreeBSD's runtime ELF linker has recently been
modified to support direct execution, i.e., on
FreeBSD 12-CURRENT one can run
/libexec/ld-elf.so.1 as an executable—
the usage string as of writing is shown in Listing
2. This ability has long been present in Linux's
ld-linux.so.2, but it was not required on
FreeBSD until motivated by the requirements of
oblivious sandboxing. Now, direct execution has
been implemented together with the ability for
the runtime linker to accept as a command-line
argument a file descriptor to link and run—these
changes will be present in FreeBSD 12 and 11.1.
Together, they allow a process in capability mode
that has capabilities for a runtime linker and a
binary to fexecve (2) the linker, preserving
open files including the binary’s capability, and to
specify via command-line arguments which file
the linker is to execute. The net result, shown in
Figure 4, is that the specified binary is executed
using the specified runtime linker. However, with-
out access to shared libraries stored in the filesys-
tem, the runtime linker is not able to satisfy the
dynamic code-loading requirements of the appli-
cation. That requires an additional mechanism:
library path descriptors.

Shared Libraries in Capability
Mode

As described previously, essentially all modern
executable files are dynamically linked and there-
fore depend on access to shared libraries for their
correct execution. In fact, the FreeBSD-derived
MacOS does not support statically linked binaries:
ABI guarantees are maintained only at the inter-
faces of core system libraries rather than the ker-
nel [App11]. When applications compartmentalize
themselves with cap_enter(2), they can do so
after the dynamic runtime linker has discovered
library dependencies and mmap (2)'ed them in
place for later linking. If an application starts run-
ning before these libraries have been opened,
however, the linker is unable to satisfy the
requirements of dynamic symbol resolution.
Traditionally, the dynamic runtime linker has
supported a number of environment variables that
control its behavior. One example,
LD LIBRARY PATH, informs the linker of a set
of directories in which additional libraries may be
found. For example, a program may set
LD LIBRARY PATH to an internal directory that
contains application code or dynamically-loadable
plugins. We have extended FreeBSD’s ELF runtime
linker to support an additional environment vari-

ab'_el LD_LIBRARY_PAT_H_FDS- Thi_S Usage: /libexec/ld-elf.so.l [-h] [-f <FD>] [--] <binary> [<args>]
variable allows the specification of direc- Options:
tories containing shared libraries that will -h Display this help message

be searched in exactly the same way as -f <FD> Execute <FD> instead of searching for <binary>
LD LIBRARY PATH FDS, but with one - End of RTLD options

crucial difference: instead of a colon-sep- <binary> Name of process to execute

arated list of pathnames, this variable <args> Arguments to the executed process

contains a colon-separated list of directo-
ry descriptors. Since environment vari-
ables and open files are both preserved
across the fexecve (2) boundary—unlike, e.qg.,
memory mappings—this allows a parent process
to open a set of library descriptors, set

LD LIBRARY PATH FDS and then enter capabil-
ity mode and fexecve(2) the runtime linker
itself with access to its shared library directories.
Combined with the direct-execution support
described in the previous section, this allows a
dynamically linked application to be executed
from within a sandbox.

libpreopen: Transparent
Filesystem Proxying

It is useful to be able to execute code from within
a sandbox, including code that is dynamically
linked, but that is insufficient for the goal of obliv-
ious sandboxing. Most Unix applications are writ-
ten using common system calls such as
access(2), stat(2), and open(2) to test
and gain access to files within the filesystem.
These system calls inherently require access to the
global filesystem namespace, so they are not per-
mitted in capability mode. It is possible to write
applications to use fstatat(2), openat(2),
etc., relative to an explicit base directory, but
many extant applications have not been written
this way. To achieve oblivious sandboxing, applica-
tions must be confined and resources must be
provided without application modification.

We can interpose a runtime translation of
system calls from capability-unsafe to capability-
safe variants using the runtime linker: the
LD_PRELOAD environment variable allows us to
name libraries that should be loaded before any
others. When libraries are named in this environ-
ment variable without absolute paths, the runtime
linker searches through its default search paths for
libraries of the given names, but not before con-
sulting LD_LIBRARY PATH FDS, making
LD PRELOAD a capability-mode-compatible direc-
tive. If we provide an implementation of a 1libc
function such as open(2), our implementation
will take precedence over that of libc, where sys-
tem calls are defined as “weak” symbols. Our
implementation of open(2) can translate the
provided path argument into an openat (2) call,
but by itself, this adaptation accomplishes noth-

Listing 2: Current usage options for FreeBSD’s ELF runtime linker.

ing: the application will still attempt to look up a
path name that is not relative to a directory, only
this time it will do so using the openat (2) sys-
tem call instead of open(2).

The final component that is required to adapt
filesystem namespace operations is a set of pre-
opened directory descriptors that other operations
can be performed relative to. This is the core
abstraction provided by 1ibpreopen, a library
that is—for the moment—maintained independ-
ently of FreeBSD. (1ibpreopen can be down-
loaded and built from https:/github.com/musec/
libpreopen). 1ibpreopen provides a
struct po_map type that is used to map direc-
tory names to directory descriptors, flags, and
capability rights, as well as 1ibc wrappers that
can look up and query a default po_map. For
example, when libpreopen’s implementation of
open (2) is passed an absolute path, it looks up
the default po_map, which can be specified as
data packed into an anonymous shared memory
segment. FreeBSD's implementation of POSIX
shared memory allows a constant “path” of
SHM_ ANON to be passed to shm open(2), creat-
ing a shared memory segment that can be manip-
ulated by file descriptor but does not appear in
the regular POSIX shared memory namespace,
making it safe for use in capability mode.
libpreopen can open such a shared memory
segment, specified by file descriptor in an environ-
ment variable, and unpack its data into an in-
memory struct po_map object. From that
po_map, the wrapper queries, “do you have a
directory descriptor whose name is a prefix of this
absolute path?” If such a descriptor exists in the
map, the absolute path is decomposed into a
directory descriptor and a relative path from that
descriptor. These two elements can then be
passed to openat (2).

libpreopen provides a mechanism for a
process in capability mode to access filesystem
resources, as long as some directory descriptors
have been pre-opened and stored in a way that is
accessible to the library. Opening such descriptors,
building a struct po_map representation,
packing it into anonymous shared memory, and
storing the file descriptor of the shared memory
segment in an environment variable are all the

May/June 2017

a

23

responsibility of the process spawning the sand-
boxed child. One example of such a process is
capsh, the capability shell.

capsh: A Capability-enhanced
Shell

The final major component of Capsicum-based
oblivious sandboxing is a program to transparently
sandbox unmodified—and unsuspecting—applica-
tions. A proof-of-concept implementation of such a
program is capsh, a shell that uses capabilities and
capability mode to sandbox applications. Hosted
independently of FreeBSD for the time being, capsh
allows users to execute simple unmodified applica-
tions from within a Capsicum sandbox. (The capsh
source code is available at
https://github.com/musec/capsh.) In its current
implementation, the program is hardly a shell at all:
it has no interactive mode, only executing a single
program per invocation. It also only supports simple
applications with statically-enumerable resource
requirements. Nonetheless, programs that fit into
this model can be executed with sandboxing from
inception without program modification.

capsh works by tying together the pieces of
the oblivious sandboxing puzzle described above.
It finds and opens a user-specified executable file,
together with a runtime linker to interpret it. It
opens library directories and stores them in the

Sandboxed application

Application logic

j dlopen(3) open(2) [
rtld libpreopen Ilbcasper
L] llbrary dirs working dirs socket _
1
1 Apphcatlon
proxy service

\

:
1
[/usr[/local]}/lib :
1
|

libc Login session
i roxy service
libxx proxy
‘\
System

proxy service

Fig. 5: A fully-sandboxed application can only access files
and services that have been delegated to it: the runtime link-
er can find libraries in pre-opened directories using

LD LIBRARY PATH FDS, libpreopen can operate on files
in pre-opened working directories—translating global-name-
space—dependent system calls such as open(2) to relative
variants such as openat (2)—and libcasper can proxy
access to namespaces of external servers.

24 | FreeBSDJournal

LD _LIBRARY PATH FDS environment variable. It
manipulates pre-opened directory descriptors, stor-
ing them in struct po_map types provided by
libpreopen and making them available to child
processes via shared memory and environment vari-
ables. It then enters capability mode via
cap_enter(2) and uses fexecve(2) to execute
the runtime linker. The net result is that an unmodi-
fied application starts running from within a
Capsicum sandbox, as shown in Figure 4.

Oblivious Sandboxing

Applications running under capsh can access only
those resources that are explicitly delegated to
them; there can be many sources of policy as to
which resources ought to be delegated. Users run-
ning capsh implicitly specify policy when they
type command-line arguments to sandboxed
applications: the presence of a filename as an
argument may be an indication that the file should
be pre-opened before the application is executed
or that permission to open the file via a proxied
mechanism such as libcasper should be grant-
ed. Users may also drive policy decisions implicitly
through interactions with a graphical user inter-
face, as in the powerbox model described in the
earlier section on Compartmentalizing with
Capsicum, and future work on capsh may con-
nect to existing models of graphical login sessions
to provide this mode of policy elicitation. Policy
may also be derived from files packaged together
with applications: a compiler's package metadata
may specify where its standard library is located,
and capsh could pre-open that directory with a
read-only capability. More sophisticated policy files
could describe limited interactions that are permit-
ted with named libcasper services, leading to a
more general model of a Capsicum application as
shown in Figure 5. Additional exploration of mech-
anism is also possible: of particular interest to the
authors of this article is the possibility of applying
LLVM-based transformation to libraries and appli-
cations that embed LLVM bitcode, allowing a
transparent rewriting of function calls to capabili-
ty-mode—friendly APIs without needing

LD PRELOAD for interposition.

Conclusion

Capsicum, a principled and coherent design for
software compartmentalization, has taken strides
in recent days toward a new security model.
Changes in the FreeBSD ELF runtime linker,
together with developments in 1ibpreopen and
capsh, allow simple applications to be sandboxed
transparently, without any participation on the
part of the application. These foundational ele-

ments have now set the stage for a deeper explo-
ration of how programming models interact with
the need for compartmentalization and to what
extent software can be sandboxed obliviously,
operating as normal with no requirement to know
whether it is operating inside of a sandbox or not.
A broader availability of oblivious sandboxing will
allow us to move to a FreeBSD in which applica-
tions “just work” and are secure by default. e

Jonathan Anderson is an Assistant Professor in
Memorial University of Newfoundland's Department
of Electrical and Computer Engineering, where he
works at the intersection of operating systems, secu-
rity, and software tools such as compilers. He is a
FreeBSD committer and is always looking for new
graduate students with similar interests.

Stanley Godfrey is a graduate student at Memorial

University of Newfoundland. His research interest is

in Capsicum, FreeBSD, and operating system securi-
ty. He did his undergraduate studies at Helsinki
Metropolia University of Applied Sciences, majoring
in software development and graduating with a
Bachelor of Engineering in Information Technology.

This work has been sponsored by the Research &
Development Corporation of Newfoundland &
Labrador (contract 5404.1822.101), the NSERC
Discovery program (RGPIN-2015-06048), and the
Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8650-15-C-7558. The
views, opinions, and/or findings contained in this
paper are those of the authors and should not be
interpreted as representing the official views or
policies, either expressed or implied, of the
Department of Defense or the U.S. Government.

Dr. Robert N. M. Watson is a Senior Lecturer
(Associate Professor) at the University of Cambridge
Computer Laboratory, where he leads research
spanning operating systems, security, and computer
architecture. He is a FreeBSD developer, member of
the FreeBSD Foundation Board of Directors, and
coauthor of The Design and Implementation of the
FreeBSD Operating System (second edition).

[App11] Apple Inc. “Technical Q&A QA1118: Statically linked binaries on Mac OS X,” Apple Developer Guides.
https://developer.apple.com/library/content/ga/ga1118. (2011)

[App16] Apple Inc. “App Sandbox in Depth,” Apple Developer Guides. https://developer.apple.com/library/content/
documentation/Security/Conceptual/AppSandboxDesignGuide/AppSandboxinDepth/AppSandboxInDepth.html. (2016)

[Bie0O6] Biederman, Eric W. “Multiple Instances of the Global Linux Namespaces,” Linux Symposium Volume One, pp.
101-111. https://www.landley.net’/kdocs/ols/2006/0ls2006v 1-pages-101-112.pdf. (2006)

[BMO6] Bauer, Mick. “Paranoid Penguin: An Introduction to Novell AppArmor,” Linux Journal 2006.148, p. 13. ISSN: 1075-
3583. URL: https://dl.acm.org/citation.cfm?id=1149839. (2006)

[Chi15] Chirgwin, Richard. “Untamed pledge () aims to improve OpenBSD security: Monkey with the wrong permissions, your
(progrz;m dies,” The Register. https://www.theregister.co.uk/2015/11/10/untamed_pledge_hopes_to_improve_openbsd_security.
2015
[Cor12] Corbet, Jonathan. “Yet another new approach to seccomp.” https:/lwn.net/Articles/475043/. (2012)

[Dry14] Drysdale, David. “syscalls,x86: Add execveat() system call,” Linux Kernel Mailing List.
https://kml.org/lkml/2014/5/27/147. (2014)

[DV66] Dennis, Jack B. and Van Horn, Earl C. “Programming semantics for multiprogrammed computations,” Communications
of the ACM 9.3, pp. 143-155. DOI: 10.1145/365230.365252. (1966)

[FN79] Feiertag, R. J. and Neumann, Peter G. “The foundations of a provably secure operating system (PSOS),” NCC '79:
Proceedings of the 1979 AFIPS National Computer Conference. DOI: 10.1109/AFIPS.1979.116. (1979)

[Lin76] Linden, Theodore. “Operating System Structures to Support Security and Reliable Software.” ACM Computing Surveys
(CSUR) 8.4, pp. 409-445. DOI: 10.1145/356678.356682. (1976)
[LSO1] Loscocco, Peter A. and Smalley, Stephen D. “Meeting Critical Security Objectives with Security-Enhanced Linux,”
Proceedings of the 2001 Ottawa Linux Symposium. https://lwn.net/2001/features/OLS/pdf/pdf/selinux.pdf. (2001)

[Pro03] Provos, Niels. “Improving Host Security with System Call Policies,” Proceedings of the 12th USENIX Security
Symposium. http://niels.xtdnet.nl/papers/systrace.pdf. (2003)

[RT78] Ritchie, O. M. and Thompson, K. “The UNIX time-sharing system,” Bell System Technical Journal 57.6, pp. 1905-1929.
ISSN: 0005-8580. DOI: 10.1002/}.1538-7305.1978.tb02136.x. (July 1978)

[SCS77] Schroeder, Michael D.; Clark, David D.; and Saltzer, Jerome H. “The Multics kernel design project,” SOSP '77:
Proceedings of the Sixth ACM Symposium on Operating Systems Principles. ACM. DOI: 10.1145/800214.806546. (1977)
[Wat+10] Watson, Robert N. M.; Anderson, Jonathan; Laurie, Ben; and Kennaway, Kris. “Capsicum: practical capabilities for
UNIX,"” Proceedings of the 19th USENIX Security Symposium.
https://Awww.usenix.org/legacy/events/sec0/tech/full_papers/Watson.pdf. (2010)

[Yee04] Yee, Ka-Ping. “Aligning security and usability,” IEEE Security and Privacy Magazine 2.5, pp. 48-55. ISSN: 1540-7993.
DOI: 10.1109/MSP.2004.64. (2004)

[Zab16] Zaborski, Mariusz. “libcasper(3),” FreeBSD Library Functions Manual.
https://www.freebsd.org/cgi/man.cgi?query=libcasper. (2016)

25

