
svnUPDATE
•

S E E
T E X T
O N L Y

by Steven Kreuzer

Add ipfw_pmod kernel module (https://
svnweb.freebsd.org/changeset/base/316435)

This new module is designed for modification of
packets from any protocol, only implementing

TCP MSS modification at this time. It adds the exter-
nal action handler for "tcp-setmss" action. A rule
with tcp-setmss action performs an additional check
for protocol and TCP flags. If SYN flag is present, it
parses TCP options and modifies the MSS option if its
value is greater than the configured value in the rule.

Capsicumize pom (https://svnweb.freebsd.org/
changeset/base/317165)

Ihad a good laugh when I saw this commit
because I was not aware that out-of-the-box

FreeBSD provided the ability to report the phases of
the moon. While this appears to be a fairly trivial
application with little attack surface, it has been
converted to run in a capsicum sandbox so you can
rest easy at night.

Set the arm64 Execute-never bits in more
places (https://svnweb.freebsd.org/changeset/
base/316761)

Each memory region on arm64 can be tagged as
not containing executable code. If the Execute-

never, XN, bit of the descriptor is set to 1, any
attempt to execute an instruction in that region
results in a permission fault. Set the Execute-never
bits when mapping device memory, as the hardware
may perform speculative instruction fetches. Set the
Privileged Execute-never bit on userspace memory to
stop the kernel if it is tricked into executing it.

Enable the process state bit to disable
access to userspace from the kernel on
ARMv8.1 (https://svnweb.freebsd.org/
changeset/base/316756)

ARMv8.1 introduced a new Privileged Access-
never (PAN) state bit. This bit provides control

that prevents privileged access to user data unless
explicitly enabled, which provides additional security
against possible software attacks.

Like everything else in life, security is a trade-
off, and it usually comes at the expense of the
end user losing functionality or having to
endure a decrease in performance or through-
put. What this usually means is that unless you
have people and/or an organization that have
decided to take security seriously, some of the
first things which get turned off are the fire-
walls or the access control security policies. To
make matters even worse, sometimes the secu-
rity will cause your application to break in a
nonobvious way, and taking the sledgehammer
approach of turning everything off until it
works again is all too common. At the other end
of the spectrum, you can be left with a false
sense of security and have machines that are
actually vulnerable because of a very subtle
typo you made in a complex security subsys-
tem with difficult-to-understand syntax.

S
ecurity is hard, and it’s even harder to get it
right. One of the great things about the
FreeBSD Project is that system security has

always been a major focus. Developers spend a lot
of time and effort to provide a secure and reliable
system so that someone with little to no experi-
ence using FreeBSD can build a new machine and
connect it directly to the Internet and be reason-
ably confident that nothing bad will happen. Over
the past few years, FreeBSD has been used as a
proving ground for some new and innovative con-
cepts in computer security that are both light-
weight and mostly transparent, resulting in a much
better experience for both system administrators
and end users alike. Since the topic of this issue is
security, I wanted to use this installment of svn
update to highlight some of the recent improve-
ments designed to keep you and your data safe,
be it improvements in encryption, extending
FreeBSD to support hardware security features that
are being baked into the CPU itself, or just the
ongoing work to explicitly define what an applica-
tion can and cannot do with Capsicum.

46 FreeBSD Journal



May/June 2017 47

3BSD-licensed implementation of the
ChaCha20 stream cipher, intended or used
by the upcoming arc4random replacement
(https://svnweb.freebsd.org/changeset/base/316982)

The ChaCha20 cipher is a high-speed cipher pub-
lished by Daniel J. Bernstein in 2008. It is consid-

erably faster than AES in software-only implementa-
tions due to its use of CPU-friendly Addition-rotation-
XOR operations.

Replace the RC4 algorithm for generating
in-kernel secure random numbers with
ChaCha20 (https://svnweb.freebsd.org/
changeset/base/317015)

Writing software is hard but we are pretty fortunate
that contributions being made to FreeBSD are

coming from a pool of very talented people. However,
these developers are human, and humans sometimes
make mistakes. But we have a very active community
of people who continually audit the code base looking
for potential security vulnerabilities, both large and
small. While not as exciting as some of the other
changes I mentioned, I thought it would be interesting
to take a look at a few small snippets of code that
appear innocuous, but could have potentially been
used as an avenue to compromise your system.

Use strlcpy to appease static checkers in
dummynet (https://svnweb.freebsd.org/
changeset/base/316777)

Prevent some heap overflows in restore(8)
(https://svnweb.freebsd.org/changeset/base/316799)

Prevent possible sscanf() overflow in
mixer(8) (https://svnweb.freebsd.org/changeset/
base/317596)

Fix some trivial argv buffer overruns in
ctm(1) (https://svnweb.freebsd.org/changeset/
base/316795)

Avoid possible overflow via environment
variable in loader(8) (https://svnweb.freebsd.org/
changeset/base/316771)

Fix an out-of-bounds write when a zero-
length buffer is passed (https://
svnweb.freebsd.org/changeset/base/316768)

STEVEN KREUZER is a FreeBSD Developer
and Unix Systems Administrator with an
interest in retro-computing and air-cooled
Volkswagens. He lives in Queens, New York,
with his wife, two daughters, and dog.

T

Write 
For Us!
Write 

For Us!

Contact Jim Maurer (jmaurer@freebsdjournal.com )
with your article ideas.

JOURNAL
TM
TM

TM


