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ver the last few years, a number of TLS connections
inside corporate networks increased significantly. The
percentage of encrypted Internet traffic passed 50% last
year and it doesn’t look like this trend is going to slow
down anytime soon. While it is very good to observe
that encryption is getting widespread adoption, it is
worth remembering that security has many faces. 

In corporate networks, it is crucial for security teams to control the traffic
exchanged with the outside world. Incoming traffic may contain harmful
software such as viruses or ransomware. Malware designers have already

started to use TLS to hide traffic that should never be detected by security
software. Moreover, as it is now possible to get trusted certificates for free,
assumptions such as “a padlock in the browser address field means the web-
page is secure” are no longer valid. There is also a huge demand to control
traffic from a local network to the Internet. It may contain confidential data
that should never leave internal company infrastructure.

There is a large market of specialized tools in traffic analysis that helps
network administrators provide necessary safety and guidance for network
traffic control. However, IDS (Intrusion Detection Systems), IPS (Intrusion
Prevention Systems), and DLP (Data Leak Prevention) tools may become 
powerless when the traffic they are monitoring is encrypted, e.g., with the
TLS protocol. One way to deal with this problem would be to block entire
TLS traffic, but, of course, that is totally impractical nowadays. The only  way
to get insight into it is to use a controlled MiTM technique which we
describe below. 

Lynx, developed by our company, is an enterprise class product which 
performs security-driven TLS interception. Using FreeBSD as our base

system, we were able to create a product that can greatly outperform
competing products from leading vendors in this market. In this arti-
cle, we would like to share some of our experiences. For the last two

years, we have tested and experimented with a number of approach-
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es to fast packet processing. We hope that our
story will be interesting for everyone interested in
a network system architecture.

TLS Interception
As we have mentioned before, to properly inter-
cept TLS connections, we have to use a controlled
MiTM technique (Figure 1). First, pretending to be
a destination server, we accept a TCP connection
from a client. Next, we create a second TCP con-
nection to the destination server. After that, we
can start to exchange packets between client and
server and, as a result, see the content of the pay-
load. Next, we start to analyze packets sent by the
client and check if there is a TLS Client Hello pack-
et that would indicate the beginning of a TLS ses-
sion. When we detect such packet, we check the
content of the Server Name Indication (SNI) exten-
sion, and if it exists, we save it. This extension is
used to allow servers to serve more than one cer-
tificate on a single IP address. For example, if there
are two servers, example1.org and example2.org,
and they both are hosted on the same IP address,
then SNI allows the server to choose which certifi-
cate should be presented to the client. It is also
possible that server will have one certificate that
matches both SNIs. However, this is not required
and a server may have two certificates, as in our
example.

After reading the SNI, we suspend communica-
tion with the client and we establish a new TLS
session with the server (of course using same SNI
that we have stored just before). After establishing
this TLS connection, we know what the server cer-
tificate looks like. Having that knowledge, we can
next generate an almost identical certificate and
sign it using the custom certificate authority. We
can then resume communication with the client,
complete the TLS handshake and present the just
generated certificate. If we want the TLS session
to be successful, the client needs to trust this cer-
tificate. Usually, in corporate networks, TLS clients
(e.g. web browsers) are already configured to trust
the additional CA certificate used to sign certifi-
cates of internal resources. If Lynx uses the same
CA (or sub-CA) to sign certificates that it gener-
ates, then the client will automatically trust them.

This step finishes the negotiation phase and
leaves us with two TLS channels: one with the
client, and one with the server.

As we can see for every intercepted TLS session,

Lynx has to handle two independent
TLS connections: one with a client and
one with a server. Being a part of both
connections, Lynx has the ability to see
decrypted traffic transmitted in two
directions. This decrypted data can be
next sent to other tools that can analyze its
content looking for malware or data leaks.  

Beginning of the Lynx
Architecture
The very first version of the architecture we
experimented with used one process per connec-
tion. Of course, that is a very naive approach per-
formance-wise, but has some great security prop-
erties—we could close each process in a very tight
sandbox using Capsicum, thus isolating every con-
nection from one other. With such an approach,
we could handle a relatively small number of
connections: we were limited by a number
of processes in the system, which, by
default, is 100,000, and we needed a lot

of memory. We also put huge pres-
sure on the scheduler to switch
between all those processes as the
packets were arriving.

We even didn't try to optimize
this architecture, as it didn’t allowed
us to handle hundreds of thousands
of simultaneous connections which
was already our goal. Using threads

Fig. 1
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was also not an option, as it resulted in the same
problems (mostly a scheduler overhead). Instead we
moved to a fully non-blocking and event-driven
architecture. This approach to packets processing
was, at this time, already implemented in some
network applications like Nginx. As the name sug-
gests, it is based on two main concepts:
Non-blocking:
In non-blocking programming, a user program never
performs any operation that would block its execu-
tion. If some resource is not immediately available,
then the function returns and it is the responsibility
of the user to call this function again later.
Event-driven:
The user program needs to know when it should
repeat a non-blocking operation. In the classical
approach, the user program regularly polls a speci-
fied resource to
check if its state has
changed. However,
polling may be
expensive. Generally
a better solution is
to let the operating
system inform the
user program about
resource availability.
This kind of infor-
mation is called an event.

The result of this approach is a finite and small
number of worker processes. All workers are listen-
ing on the same accept socket and it is the respon-
sibility of the kernel to share incoming connections
fairly between them. By binding workers to particu-
lar CPUs, we guarantee that scheduler overhead
will be completely unnoticeable.

To adapt Lynx to this new model, we
had to localize all blocking operations
and rewrite them to non-blocking ver-
sions. First, we needed to modify all net-
work I/O operations, which wasn't too
hard, as non-blocking operations are
supported by BSD sockets for a very
long time. Also, OpenSSL modification
was very straightforward. One of the
resources that we had to treat specially
was the PostgreSQL database. Due to
the nature of DBMS, the database can
execute only a single query at one given
time. One way to execute more than
one query is to have multiple database
connections. However, their number is
limited (in the case of PostgreSQL, it

should not be bigger than several hundred), and
using too many of them may affect performance.
Therefore, the only way to handle more queries is
to queue them at the level of the user program. To
give workers the illusion that they communicate
with the database in a fully non-blocking manner,
we decided to delegate direct database operations
to a separate module. To make communication
between a worker and a module non-blocking, we
have prepared a modified version of an nv(3) inter-
face (we have named this new IPC “nvlnbio”). We
also started using separated modules in all situa-
tions where workers needed to communicate with
some resource that did not offer a fully non-block-
ing API (Figure 2). 

Some time later during the tests, we discovered
that in the case of a large number of TCP connec-

tions per second, our worker model does not scale
very well. It turned out that it didn’t scale linearly—
every additional worker resulted in worse “per-
worker” performance, and after four workers, we
stopped scaling at all, even though each worker
had a dedicated CPU core (Figure 3).

To investigate this problem we decided to look
for locks used by the network stack during heavy
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ver time, Unix operating systems have evolved a variety of
mechanisms to launch programs and influence their execution.
To put this into perspective, let’s take a quick tour of the dif-

ferent kinds of programs that run on a typical FreeBSD system.

When the computer first boots up, the
rc(8) mechanism launches programs called
“services” that can perform one-time system
initialization tasks, or execute daemons to
run in the background. These services can
also be stopped and started while the com-
puter is running.

Every minute the computer is running, the
cron(8) daemon wakes up and launches
scheduled tasks. Cron also supports the abil-
ity to run at(1) jobs after a certain time
interval has passed. It can also run
batch(1) jobs when the system load aver-

age falls below a certain threshold.
There are many other mechanisms for

launching programs. Inetd(8) launches
programs when an incoming socket is creat-
ed. nice(1) runs programs with a modi-
fied priority level. chroot(8) launches pro-
grams with an alternate root directory.
service(8) launches programs with a
“supervisor” process that can restart the
program if it crashes. Jail managers like
jail(8) launch programs within a jailed
environment. Virtual machine managers like
iohyve(8) launch programs that execute a
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load (we were using FreeBSD 10.2). For this pur-
pose we used a LOCK_PROFILING(9) interface
provided by the kernel.

First we checked lock usage with one worker
running (Figure 4).

Next we repeated the same situation, but with

two simultaneously running workers (Figure 5).
When two workers were running, the new

type of locks related to TCP processing started to
be hot. When more than two workers were
launched, those locks became more and more
active, and we suspected that they may be a
source of the performance decrease we
observed.

We had also used dtrace to detect all situa-
tions in which blocking could occur. Our goal
was to have a program that blocks only if there
is no work to do. We wanted to eliminate block-
ing on socket operations, IPC communication or
reading data from the disk. The only place that

we expected to be blocking was on invocation of
the kevent(2) function on the main event loop.

Therefore, we created a dtrace script that
informs us whenever blocking occurs in any
other function (next page).

The sleepq_add(9) is the best place to check if
the process is blocking somewhere in the kernel.

Fig. 4

Fig. 5

max wait_max total wait_total count avg wait_avgcnt_hold cnt_lock name

18 68 455629 2835614 3157952 0 0 0 515451 /src/sys/netinet/in_pcb.c:1618 (sleep mutex:pcbgroup)

19 74 580341 33734 8447282 0 0 0 101461 /src/sys/kern/kern_timeout.c:535 (spin mutex:callout)

2 3198 202 31632 1410 0 22 0 14 /src/sys/kern/kern_exit.c:469 (sx:allproc)

0 30284 0 30284 4 0 7571 0 1 /src/sys/dev/coretemp/coretemp.c:327 (spin mutex:sched lock 0)

60 38 699727 17510 5413739 0 0 Q 48641 /src/sys/net/route.c:439 (rw:rtentry)

max wait_max total wait_total count avg wait_avgcnt_hold cnt_lock name

18 43 572746 3814587 4077828 0 0 0 572552 /src/sys/netinet/in_pcb.c:1618 (sleep mutex:pcbgroup)

310 573 1046182 3237040 582523 17 5 0 196106 /src/sys/netinet/tcp_usrreq.c:1142 (rw:pcbinfohash)

552 538 10662226 2522505 582523 18 4 0 241451 /src/sys/netinet/tcp_usrreq.c:296 (rw:pcbinfohash)

17 103 81477 1970702 1137267 0 1 0 250167 /src/sys/netinet/in_pcb.c:1322 (rw:pcbinfohash)
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Network Stack Virtualization
(VNET)
To overcome locking problems, we decided to give
VNET(9) a try. We hoped that locks detected dur-
ing our test would be virtualized, and as a result
workers would no longer need to compete for
them. The test results showed that our assump-
tions were right (Figure 6). 

After using VNETs, hot locks on the TCP stack
were no longer present.  Performance tests also
showed that worker scalability after using VNETs
gets much better.

To easily adapt VNET technology into our archi-
tecture, we had to make a couple of changes in
the kernel code. By design, VNETs are tightly inte-
grated with jails. For example, when an interface is
attached to the VNET, it disappears from the glob-
al system view and is only accessible from within
the appropriate jail. Therefore, to use interfaces
attached to VNETs, we would have to launch our
worker programs in many separate jails, but we
didn’t want that. Instead, we have modified the

#!/usr/sbin/dtrace -s

syscall::kevent:entry
/execname == "lynxd"/
{

self->inkevent = 1;
}

fbt::sleepq_add:entry
/!self->inkevent && execname == "lynxd"/
{

printf("%s(%d)\n", execname, pid);
stack();
ustack();

}

syscall::kevent:return
/execname == "lynxd"/
{

self->inkevent = 0;
}

Fig. 6 max wait_max total wait_total count avg wait_avgcnt_holdcnt_lock name

19 135 700557 3763943 4556117 0 0 0 480993 /src/sys/netinet/in_pcb.c:1618 (sleep mutex:pcbgroup)

19 56 1067986 93090 12345133 0 0 0 347169 /src/sys/kern/kern_timeout.c:535 (spin mutex:callout)

33 19 1169609 39617 7805677 0 0 0 95923 /src/sys/net/route.c:439 (rw:rtentry)

25 30 220474 32546 1952683 0 0 0 86194 /src/sys/kern/kern_event.c:1895 (sleep mutex:kqueue)

0 3253 251 18068 1664 0 10 0 7 /src/sys/kern/kern_exit.c:469 (sx:allproc)
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socket(2) interface to allow us to define VNET num-
bers during socket creation (Figure 7):

Choosing VNET technology allows us to resolve one
other problem that we were facing at the time. As
mentioned before, Lynx only decrypts traffic and
doesn’t do any kind of traffic analysis. Other moni-
toring devices (e.g., IDS or IPS) are used for this pur-
pose. Such devices can usually operate in two
modes. The first is when they fetch a copy of the
traffic and analyze it without accessing the main
data path—this mode is called “out-of-band.” In
the second mode, a monitoring device needs to
have access to the real traffic and thus to the main
data path—this mode is called “inline.” The out-of-
band mode was supported in Lynx from the begin-
ning, but the inline mode was still to be implement-
ed. As Lynx itself stands in the main data path, there
was a need to create a kind of sub-path to which a
monitoring device could be connected. From the
hardware view, such a sub-path would be just a
wire loop between two NIC interfaces. The question
we were facing was how we should create a TCP
connection on such a loop. One possibility was to
craft all TCP packets in our code (we were already
doing it for out-of-band mode). However in out-of-
band mode, we only send packets, so there is no
possibility that TCP problems like packets reordering
or packet drops would happen. In the inline mode
such situations could take place (e.g., the monitor-
ing device would drop packets) and so it was
mandatory to handle them properly. Therefore, we
quickly became convinced that the only possible
solution was to use a full TCP stack implementation.

The most obvious solution implied usage of the
FreeBSD kernel network stack. The plan was to call

accept(2) on one NIC port, connect(2) on the second
port and as a result establish a TCP connection where

packets would appear on the wire linking two inter-
faces. However, it turned out that in such a situation,
the network stack detects that it controls both sides
of the transmission and therefore forwards all the
traffic through the kernel. As a result, the TCP con-
nection is properly established, but no packets are
ever transferred over the physical wire (Figure.8).

Using VNETs solved this problem because it put
two NIC interfaces into two separate virtualized
stacks that now did not see one other (Figure 9).
The result was that packets were forced to be trans-
ferred over the wire. VNETs also allow us to use the
same TCP/IP addressing on multiple interfaces,
which is not possible with a single TCP/IP stack.

Full Scalability
Up to this point, we have been talking about per-
formance mostly in terms of the maximum number
of TCP connections per second. However, another
very important benchmark in the case of network
devices is a traffic throughput. The nice thing about
using modern CPUs is that there are no major dif-
ferences between transmitting plain and encrypted
traffic. With support for AES-NI acceleration, pro-
cessing of encrypted packets is almost free. One
CPU core (tests were performed on Intel Xeon E5-
2697A v4) can process about 10.4 gigabits of
encrypted data per second. This means that in the-
ory, two cores are enough to decrypt/encrypt TLS
traffic on a full-duplex 10Gb NIC port. During our
test it turned out that logical cores that were avail-
able when Hyper-Threading was enabled were per-

/* Create socket bounded to VNET (jail) number 100. */
int sock = socket(PF_INET, SOCK_STREAM | VNET_TO_SOCKTYPE(100));

Fig. 7

Fig. 9Fig. 8
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forming AES as well as physical cores.
However at such high throughput, other factors

start to have significant impact on performance.
Most of them are related to memory:

A general approach to handling all of these
cases is to guarantee that data processed by the
device is read/write as infrequently as possible, and
when it is happening, then as many operations as
possible are performed on it (run-to-completion
architecture). In other words, we need to have full
control of the place where packets are processed
(i.e. on which CPU) and when it happens.

The first place where we can control packets is
the network card. In modern NICs, packets are
processed in separate queues, and it is possible to
steer how they are distributed across those
queues. Usually RSS (Receive Side Scaling) is used,
and packets are classified by IP addresses (and
sometimes by port numbers). As a result, packets
from one connection are always processed by the
same NIC queue. If we want the connection in
both directions to be hashed to the same RSS
queue, then we need to be sure that the RSS key
used for hashing is symmetric. Such a key can be
easily found on the Internet.

Going forward, we would like to be able to
process packets from one queue always on the
same CPU core. To achieve this we have to bind
all workers and corresponding IRQ threads (one
per receive NIC queue) to specified cores.

All of this hardware optimization is possible

using the kernel stack. However, even using
VNETs, there is still a possibility that multiple work-
ers would compete for some locks. Switching
between kernel and userspace context may also
decrease performance. Every read-and-write oper-
ation causes execution of a syscall which triggers
a copy of memory from a user buffer to a socket
buffer. To mitigate those problems, we have
decided to try a solution that is recently getting
widespread attention—user space TCP stack.
There are many implementations of such stacks
available, but we decided to try libuinet developed
by Patrick Kelsey. It is a user space implementation
of a FreeBSD kernel stack and, therefore, it inher-
its most of its attributes like stability and efficien-
cy. It works on top of netmap, which is another
excellent software that allows user space apps to
get direct access to NIC buffers. Both of these
solutions guarantee that after receiving a packet
on a NIC it will be delivered directly to a user
space program without the need to use kernel
context (besides IRQ threads for communication)
and with as few as possible memory operations.

Summarizing, at this point incoming packets
would be processed in this order:
1.Received on NIC, which forwards it to an

appropriate queue.
2. DMA packets to a memory region mapped 

by netmap.
3. Packets processing by libuinet stack.
4. Read packet data into worker code.

All work required in this path would be done
on the same CPU core. The output route would
look very similar (in our case one worker process is
responsible for both receiving and sending pack-
ets, so output processing would still take place on
the same CPU core).

Using libuinet and netmap also allow us to opti-

• number of cache misses,
• memory locality in case of NUMA architecture,
• speed of RAM memory (both throughput and latency),
• number of memory channels on the motherboard,
• speed of the QPI bus.
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mize a couple of things. We could, for example, do
zero-copy of packets other than TCP, as they don’t
contain TLS and, therefore, are not interesting to us.
This feature is already implemented in libuinet, so
using it is as simple as setting an L2 bridge.

After implementing all those pieces of new archi-
tecture, we began performance tests. As we expect-
ed, the new architecture scales much better com-
pared to the previous (VNET) solution (Figure 10)

To generate TCP traffic, we were using our own
software, which worked similarly to the iperf utility.
We have a client machine and a server machine
that exchange random data using 64 TCP connec-
tions. Between those two machines, we put Lynx,
which exchanges data between connections on
both sides.

Lynx is equipped with the following hardware:
• 2 x Intel Xeon E5-2697A v4 CPU (16 physical

cores with HT enabled). In total, it gives us 64 
logical CPU cores.

• 256 GB of 2400 RDIMM RAM placed in 8 
channels (4 channels per CPU socket).

• 10 Gbps T540-CR Chelsio NIC cards.
We run our tests by increasing the number of

CPU cores processing packets starting from 1 and
going to 64. For one CPU, VIMAGE architecture
gave us very good result (about 5 Gbps). With 4
cores processing packets, we have seen similar
results for both VIMAGE and libuinet architecture.
But for a higher number of cores, libuinet architec-
ture showed its potential. While its performance
didn’t scale linearly, it still offered a very good ratio
between processed traffic and number of cores
used. With a maximum number of 64 cores, it
allows Lynx to process over 50 Gbps of traffic (this
is still related to TCP traffic, but with some other
optimizations not described in this article, we were

also able to process 50 Gbps of TLS traffic). In the
same time, VIMAGE architecture lets us process
only 20 Gbps of traffic.

What’s Next
While libuinet architecture did a great job, there are
still a lot of possible optimizations that we would
like to explore in the future. We are sure that our
biggest current bottleneck is the memory band-
width. Using PCM tools, we were able to measure
that the saturation of RAM throughput almost
reaches its limit. We need to investigate whether all
packet copying operations are required and to look
for solutions that would increase the possibility that
processed data is already in the CPU cache.

During our test we didn’t have
NUMA or COD enabled. Both of
these technologies should help us
achieve better memory locality per
CPU socket. Without it, both proces-
sors use each other’s RAM banks,
which causes increase of memory
access latency. Furthermore, it causes
high utilization of the QPI bus whose
throughput is also limited.

There is also a broad range of opti-
mizations that can be done on NIC
cards. We use Chelsio cards that offer
a lot of interesting features. For exam-
ple, they allow movement of packets
between the ports of one NIC card

without using system RAM at all. Such solutions may
be used to move packets other than TCP, as they are
not interesting for Lynx in any case. Also, Direct
Cache Access (DCA) can reduce number of read
operations and as a result, decrease RAM usage. The
next stop for Lynx is 100 Gbps. Stay tuned! •
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