
4 FreeBSD Journal

FreeBSD Is a Complete System
FreeBSD is a complete, open-source operating sys-
tem that includes all the sources and tools to
enable the consumer of the operating system to
rebuild the entire system from the supplied sources.
The completeness of the system is one of the key
differentiators between FreeBSD and Linux. Linux is
actually just the operating system kernel—a large
piece of code—but not a complete system. To build
a Linux system, a number of tools, packages, and
libraries need to be installed alongside the sources.
With a FreeBSD system, users can rebuild their
entire systems the moment after FreeBSD is
installed onto their computers. The \emph{self host-
ing} aspect of the FreeBSD system should not be
overlooked because it is a core part of the philoso-
phy of FreeBSD, the empowerment of the user. A

This article is based on a number
of talks where various members
of the FreeBSD community have

differentiated FreeBSD from Linux. As
Linux is still the better-known sys-
tem, it is useful as a foil against which
to compare FreeBSD and explain to a
technical audience just what FreeBSD
is, what it does, and how it can be
applied to build a variety of systems
that require an operating system.
Since this article appears in the
FreeBSD Journal, I expect readers are
familiar with FreeBSD, and so I have
organized the article as a set of talk-
ing points that can be referenced
when you’re trying to explain
FreeBSD to colleagues or company
management.

FreeBSD 
is Not a

LINUX DISTRO

BY GEORGE V. NEVILLE-NEIL

S E E
T E X T
O N L Y



Sept/Oct 2017 5

complete FreeBSD system comes not only with
the source code, but also with extensive docu-
mentation on all aspects of the system, including
the built-in commands, library, and kernel APIs.
The goal is to make users of FreeBSD as produc-
tive as possible once the system has been
installed.

The operating system is only a small compo-
nent of most modern systems. The majority of
the software involved in building and deploying
any significant system is not a component of the
operating system, but instead is part of the user
space software that runs on top of the operating
system. FreeBSD supports third-party software via
the ports and packages system. Most users will
interact only with the packages system, which
contains pre-packaged versions of software such
as web servers and browsers, high-performance
math libraries, language compilers and inter-
preters, and nearly any other open-source tool
that is actively being maintained. Packages are
built from the ports system, which is a large, hier-
archically organized collection of Makefiles that
knows from whence to retrieve software and
how to build that software so that it runs on
FreeBSD. The current set of ports encompasses
more than 24,000 software packages. Consumers
of FreeBSD can add their own software packages
to the ports system as a way of building their
own customized, installable version of FreeBSD.

Who Is the End User?
A Linux distro is a way of packaging an operating
system kernel along with a set of applications
into a system that can be installed by an end
user. For many years Linux distros have been tar-
geted for either desktop or server installations. A
common example is the Ubuntu distro which
comes in two configurations, one for servers and
the other for desktops.

From FreeBSD's point of view, the end user is
most often an engineer or software developer
who will use FreeBSD to create something new,
based around the FreeBSD system. Consumers of
FreeBSD come in all shapes and sizes, and over
the years, other open-source systems have been
developed around FreeBSD, which are then con-
sumed for particular purposes, such as pfSense
for firewalls, FreeNAS for storage appliances, and
TrueOS (formerly PC-BSD) for desktops and lap-
tops. It is these systems that appear closer to a
"distro" than FreeBSD itself.

Alongside these open-source systems, many
companies have taken all, or part, of FreeBSD and
used it as the basis of their own products. Apple,
NetApp, Isilon, Juniper, and Sony, to name only a
few, have used FreeBSD as the basis of successful
products in desktop, mobile, storage, networking,
and gaming. Each of these engineering con-
sumers has been able to treat FreeBSD as a col-
lection of libraries that can be combined to create
an operating system to support their own prod-
ucts, and in this case, the end user isn't a con-
sumer per se, but rather an engineer who is
building a product for an end user.

Why Do People Use FreeBSD?
What motivates someone to use FreeBSD? There
are five key reasons that people decide to use
FreeBSD, and these are: our history of innovation,
great tools, mature release model, documenta-
tion, and business-friendly license, all of which
differentiate FreeBSD from a Linux distro.

FreeBSD is a child of the original Berkeley
Software Distribution, the Unix variant that was
developed at the University of California at
Berkeley during the 1970s and 1980s. Virtual
Memory, the Fast File System, Sockets API, and
TCP/IP are all innovations that occurred in the
original BSD system. FreeBSD has continued that
tradition of innovation, producing high-perform-
ance software that was an early adopter of multi-
core systems, 10G, 40G, and 100G Ethernet, and
the LLVM compiler suite.

LLVM is an example of how FreeBSD works with
and integrates great tools. The LLVM compiler suite
has led to an order of magnitude increase in inter-
esting compiler technologies, technologies that just
were not possible with the GNU compilers. LLVM
has been particularly strong in the use of new
compiler techniques to enhance security, leading to
both research and deployment of more secure sys-
tems. With LLVM as our default compiler, all of
these innovations have appeared in FreeBSD before
appearing in other operating systems.

Anyone who has tried to produce a series of
products on top of a Linux distro has run up
against the inconsistencies in the Linux release
model. Between one minor release and another,
the Linux kernel APIs are not stable; in fact, Linux
is committed to not having stable kernel APIs.
That may be fine for those who want to only run
the tip of the tree, but it is a disaster if you are a
company trying to field products and upgrade



6 FreeBSD Journal

them over time.
The FreeBSD release model requires that long-

term branches, those numbered 9.x, 10.x, 11.x,
maintain kernel API stability throughout their life-
times. This commitment to stability means that
products built using FreeBSD 10 can continue to be
upgraded until the end of life of the 10 branch.
New features and bug fixes will appear throughout
the lifetime of the branch, but they will only appear
if they do not change the way in which already
established APIs work. These concepts are often
wrapped up in the idea of the principle of least
astonishment (POLA), whereby we try to not sur-
prise our consumers, and where we clearly delin-
eate the circumstances under which breaking
changes are allowed to occur, such as across major
release branches.

FreeBSD’s documentation is second to none, and
is, in fact, often referenced by those who are look-
ing for generic information about other Unix sys-
tems and how they work. The manual pages not
only cover the traditional areas of the system, such
as commands (Section 1), system calls (Section 2),
and libraries (Section 3), but also the kernel APIs
themselves are documented in Section 9 of the
manual pages. The FreeBSD Handbook acts as an
overarching reference document to the system as a
whole and covers higher-level topics relating to sys-
tems administration and software development.

Open-source systems are not just software; they
also encompass a philosophy, most often described
in the license they choose to use. The two-clause
BSD license used by FreeBSD embodies the FreeBSD
philosophy, which might be summed up as: use our
code and don’t sue us. The license is short, a mere
200 words, and is easy to understand. The GPLv2
used in Linux is over 2,900 words, and requires a
lawyer to understand all of the ramifications of
working with it.

Community Organization
Each open-source project has its own unique form
of organization. Linux adheres to the "big high
stomper" model, whereby Linus and his various
lieutenants control access to the source tree. Linus
is the leader because he started the project, and his
lieutenants maintain their position in the project
because they were chosen by Linus.

The FreeBSD Project is organized by and for
those who commit to the source tree, and has no
single owner or dictator. A committer is simply a
person with commit access to the central source

code server. Three types of commit bits exist, one
each for documentation, port, and the source tree.
There is no wall between these three types of
access; they exist simply to differentiate the areas in
which people might be doing most of their work. A
source bit is granted to those who are working on
the built source of the system either in the kernel
or its associated tools. Documentation bits are held
by those who are working on manual pages as well
as projects such as the FreeBSD Handbook, the liv-
ing document that describes FreeBSD as a whole
and which goes far beyond what is contained in
the manual pages. The ports system is maintained
by ports committers, who have ports bits. Any one
person may have any or all of these bits, and,
indeed, those who have worked on FreeBSD for a
number of years often wind up with all three of
these commit bits.

The process of being granted a commit bit is 
relatively straightforward:

These seven steps are how the FreeBSD Project
continues to bring new blood into the project.

The core team is one of the components of the
mentorship process. The core team, consisting of
nine members, is elected every two years to help run
the project, but the core team does not dictate what
the committers work on. Core exists to facilitate the
project and occasionally steps in to mediate dis-

1 Alice interacts with the project, often by submitting
patches to the system sources, ports, or documentation.

2 Until Alice has her own commit bit, her changes must
be committed by a current committer, Bob.

3 After some time, Bob realizes that Alice could be com-
mitting her changes on her own, and he proposes Alice
for a commit bit.

4 Bob emails the appropriate team to propose Alice for a
commit bit. If Alice is working on the source, then Bob
will contact the core team, but if she is working on docu-
mentation, Bob will contact the docs team, or, if she is
working on one or more ports, he'd contact the ports
team.

5 The core, documentation, and ports teams can then
vote on the proposed commit bit, and if the bit is grant-
ed, Bob would become Alice's mentor.

6 For some period of time Bob will have to approve all of
Alice's commits to the tree, a process that requires Alice
to check her changes with Bob, via the code review sys-
tem, https://reviews.freebsd.org.

7 Once Bob is happy that Alice can get by on her own,
he releases her from mentorship. Alice can now go on to
mentor new committers on her own.



Sept/Oct 2017 7

agreements that may arise between committers.
Core also sponsors other teams, such as the ports,
documentation, security, and release engineering by
granting hats. Within the project, a particular
responsibility is referred to as a hat, and the head of
the team is thought of as wearing that hat. A more
complete description of the governance of the proj-
ect is given in this issue by McKusick and Rice.

Modern Features
While philosophy, community organization, and
licenses are important differentiators between
FreeBSD and Linux, there are also excellent techno-
logical reasons for working with FreeBSD. FreeBSD
has many modern features that are not present in
any Linux distro, including the UFS and ZFS filesys-
tems, DTrace, and Capsicum.

FreeBSD has always had a modern implementa-
tion of the Fast File System, originally designed and
built for BSD, and continuously upgraded over the
last 30 years to keep pace with changing storage
technology. The latest version, UFS2, includes sup-
port snapshots, as well as journaled soft updates.
Journaled soft updates make recovering from a sys-
tem failure—one where the integrity of the filesys-
tem must be verified—quick and painless. Prior to
the inclusion of soft updates, the process of check-
ing a filesystem, carried out by the fsck program,
might take hours on a large disk, or even longer
with a multi-terabyte disk. Journaled soft updates
remove the need to check over the entire disk,
meaning that even an 8T drive can be made ready
within seconds after a system reboot.

Large storage deployments, those that contain
tens of disks and petabytes of data, are addressed
using the Zetabyte Filesystem (ZFS). First designed
and implemented as part of Solaris, ZFS was
imported into FreeBSD in the early 2000s and
quickly gained popularity in systems that required a
fully functional volume manager backed by the lat-
est RAID techniques. ZFS in FreeBSD remains fully
up-to-date with the code maintained in the
OpenZFS project, and several of the ZFS developers
now work directly on the code in FreeBSD

Another excellent technology to come out of
Sun's Solaris group is DTrace, which was ported to
FreeBSD in 2008, and which is now being main-
tained and updated actively within the FreeBSD
source tree. DTrace gives programmers and systems
administrators complete system transparency, allow-
ing users to see inside any function call within the
kernel or within a program running on FreeBSD,
without the need for the original source code. 

FreeBSD has always had a pragmatic approach to
security, bringing in features that had broad appli-
cability in securing the system. One recent addition,
Capsicum, is a good example of this pragmatism.
Capsicum is a modern capability system that was
built with and for FreeBSD. Capabilities come out
of research that was done in the 1970s, but there
has never been a practical, widely fielded, capability
system in a general-purpose operating system until
Capsicum was integrated into FreeBSD. Capsicum
helps developers build more-secure software by
providing a lightweight framework for the compart-
mentalization of software. Robert Watson, who
built Capsicum, points out, “Without compartmen-
talization, one vulnerability means that the entire
application—and all the data it has access to—are
available to the attacker. With compartmentaliza-
tion, software is still vulnerable, but attackers must
work harder to find and exploit many more vulner-
abilities before they gain the full rights of the user.”

Conclusion
The goal of this article was to give you a way of
explaining to others how FreeBSD is not a Linux 
distro. We presented differentiators in five key
areas, including: technical innovation, tooling,
release model, documentation, and the business-
friendly BSD license. Whether you're reading this as
a consumer of FreeBSD or as someone who uses
FreeBSD to produce some other, technical artifact,
we're sure that you also have ways in which you
see FreeBSD as being distinctly different from a
Linux distro. We encourage readers to write the
Journal to share their ideas. If we have a good
response, we'll publish a brief, follow-up article so
that your ideas can help others in the FreeBSD
community. •

GEORGE V. NEVILLE-NEIL works on network-
ing and operating system code for fun and prof-
it. He also teaches courses on various subjects
related to programming. His areas of interest are
code spelunking, operating systems, networking
and time protocols. He is the coauthor with
Marshall Kirk McKusick and Robert N. M. Watson
of The Design and Implementation of the
FreeBSD Operating System. For over 10 years he
has been the columnist better known as Kode
Vicious. He earned his bachelor’s degree in
computer science at Northeastern University in
Boston, Massachusetts, and is a member of
ACM, the Usenix Association, and IEEE. He is an
avid bicyclist and traveler and currently lives in
New York City.


