
FreeBSD
Linux: ZFS

8 FreeBSD Journal

Why Use ZFS?
It is not that other filesystems are bad; they
just make the mistake of trusting your storage
hardware to return your data when you ask
for it. As it turns out, hard drives are pretty
good at that, but pretty good is often not
good enough. ZFS is the only open-source,
production-quality filesystem that can not only
detect but correct the errors when a disk
returns incorrect data. By combining the roles
of filesystem and volume manager, ZFS is also
able to ensure your data is safe, even in the
absence of one or more disks, depending on
your configuration. ZFS doesn’t trust your
hardware; it verifies that the correct data was
returned from each read from the disk.

The primary design consideration for ZFS is
the safety of the data. Every block that is writ-
ten to the filesystem is accompanied by a
checksum of the data, stored with the other
metadata. That metadata block also has a
checksum, as does its parent, all the way up to
the top-level block, called the uber block.
When the ZFS filesystem is mounted, it exam-
ines the available array of uber blocks and
selects the newest one with a valid checksum.
When combined with the copy-on-write fea-
ture, this means that in the event of a power
failure or system crash, ZFS will still have a
consistent view of the filesystem; any opera-

BY ALLAN JUDE

OpenZFS is available on many plat-
forms, including FreeBSD and Solaris
derivatives like IllumOS, as well as Mac
OS X and Linux. However, not all of the
functionality is available on the latter
platforms. The FreeBSD Project has fully
adopted ZFS, putting significant effort
into integrating it with the system and
management tools to make ZFS a seam-
less part of the OS, rather than a bolt-
ed-on extra. OpenZFS is better inte-
grated, instrumented, and documented
on FreeBSD than on any of the various
Linux distros. 

VS.

S E E
T E X T
O N L Y



Sept/Oct 2017 9

tions that were in progress, but did not complete,
are rolled back to keep the filesystem in pristine
shape. This means no need for a long filesystem
check after an unexpected shutdown.

Every time a block of a file is read from a ZFS
filesystem, the data returned by the disk is check-
summed, and that checksum is verified against the
one stored in the metadata. If the results differ,
this means the disk has returned incorrect data.
ZFS will detect this, keeping a count of such errors
for each disk, as this may be a sign of impending
disk failure. If your ZFS filesystem is configured
with redundancy, like mirrors or RAID-Z, this parity
information will be used to reconstruct the incor-
rect block, and write the repaired data back to the
disk. If there is no redundancy and the data can-
not be recovered, an error will be returned. This
allows the operating system to stop an application
from using invalid data, which may cause it to
crash or do the wrong thing.

ZFS provides a great many other features,
including transparent compression, advanced
tiered caching, snapshots, deduplication, replica-
tion, delegation, boot environments, and, soon,
even “at-rest” encryption. ZFS was designed to
make the storage administrator’s life easier by
making adding capacity as easy as possible. ZFS
also simplified the management of quotas and
reservations, the management of network file-
sharing, the delegation of permissions, and all of
the other common tasks that make up a storage
admin’s day. All of this is managed from an intu-
itive command line interface, designed to be used
by both human hands and automated with scripts.

Boot Environments
While the biggest feature of OpenZFS is the data-
integrity guarantees it provides, the next most
useful is the concept of boot environments. This
feature allows a device to have multiple concur-
rent OS installations and easily flip between them
at boot time. With the copy-on-write nature of
ZFS, these additional images often consume very
little storage space. All that is required is to have
the root filesystem located on ZFS, and some
integration with the boot loader. These features
have been available in FreeBSD for years, and are
constantly being refined and improved.

On a mobile computing platform, this flexibili-
ty and stability guarantee can be exceptionally
useful. Imagine just a few minutes before your
big presentation, you discover last week’s update

has caused some problem with the presentation
software. Reboot, select last week’s boot environ-
ment; now the OS and applications have been
rolled back to the known working state, but your
data files, home directory, etc., are still the most
current version. Another reboot and you are back
to the most up-to-date system image. The entire
system is now effectively under a rudimentary
type of version control. Fork your system and try
an experiment, safe in the knowledge you can
always flip back to the working system with a
quick reboot.

Your separate system images do not need to
be copy-on-write clones of each other. They can
be entirely separate stand-alone images. Switch
between the stable release and a developmental
snapshot with ease, all while sharing your user
data files. Need to test your latest work on every
supported release of FreeBSD? No sweat. With
some extra work, it is even possible to multiboot
other operating systems that support OpenZFS.

At ScaleEngine we use this mechanism to dis-
tribute customized golden images of FreeBSD.
After building and tweaking FreeBSD just as we
like it, a replication stream is generated with the
zfs send command, and redirected to a file.
Production servers then fetch that image over
HTTPS, and feed it into zfs recv, creating a new
boot environment. Then zfsbootcfg configures
that new boot environment to be used for the
next boot (only). If there is something wrong
with the image, such that it does not boot prop-
erly, or crashes, a power cycle will see the system
come back up on the original system image. A
script running in the new system image can make
that image the new default if the system remains
up for 10 minutes and the network connectivity
requirements are met. This procedure allows us
to safely upgrade remote systems all over the
world with little chance of things requiring addi-
tional human intervention. If the new image is
not satisfactory, a single command changes the
default to one of the previous images and then a
reboot puts the system back into operation. This
all makes it extremely easy to test developmental
images on a small fraction of our production fleet
without any special handling.

Another feature that is coming soon to
OpenZFS will see repeated system failures result
in the system booting into a special
debugging/rescue image. In environments like
Amazon’s EC2, where there is no console sup-

•



10 FreeBSD Journal

port, if the system does not come up fully, due to
a boot failure or repeated panic, there is no easy
way to repair the system, short of mounting its
drive in a different EC2 instance. With this new
feature, a counter will be incremented at each
boot, and only if the system remains up long
enough, will a script in the image reset this count-
er to zero. If the counter exceeds the threshold,
the new boot will see it load the rescue image
instead and summon an operator to debug and
resolve the issue.

Disk Encryption
FreeBSD has a high-performance, full disk encryp-
tion system called GELI. It has long been used in
combination with ZFS to create fully encrypted
pools. This required special handling of the boot
process, since the loader needed to load the ker-
nel from unencrypted storage. In early 2016, I
integrated GELI support into the bootstrap and
loader to allow booting from a zpool with no part
of the filesystem unencrypted.

The closed-source version of ZFS, now from
Oracle, has supported encryption for some time,
but this feature has never been available in open-
source ZFS.

SSD TRIM
FreeBSD is currently the only OpenZFS implemen-
tation that has support for TRIM. TRIM support
was integrated into FreeBSD in 2012 to improve
the performance of pools consisting of SSDs and
other flash-based devices. TRIM support provides
feedback to the FTL (Flash Translation Layer) about
blocks that are no longer in use and can be recy-
cled, allowing the SSDs firmware to better manage
wear leveling and garbage collection.

The OpenZFS project has work in progress to
integrate a different, universal TRIM/UNMAP fea-
ture across all supported platforms; however, it is
not expected to be completed until 2018. This
new implementation is more advanced and is
expected to further improve performance, but in
the meantime, ZFS users on all other platforms are
left with no TRIM support at all.

Jails
Solaris and its derivatives have zones, and
advanced container technology based on the con-
cepts pioneered by FreeBSD jails. This means that,
from the beginning, ZFS had advanced integration

with zones, and when ZFS was ported to FreeBSD,
those features came along and were adapted to
work with FreeBSD jails. Linux does not have a
direct analogue to jails or zones, and so at this
time has no support for ZFS in containers.

In FreeBSD, a dataset (ZFS filesystem) can be
marked as “jailed.” When this flag is set, the
filesystem is no longer able to be mounted on the
host system (Global Zone in Solaris parlance). This
is a security feature. Datasets that have been dele-
gated to a container have mount points relative to
the root of the container. A jailed dataset with a
mount point of /etc that became mounted on the
host system could change the root password and
other configuration, which would allow a user
from the container to control the contents of files
that may end up on the host.

Once a filesystem has the jailed property set,
the ‘zfs jail’ command can be used to delegate a
dataset and all its children to a specific jail.
Provided the allow.mount_zfs parameter is activat-
ed, root inside the container has complete control
over the dataset and its children, except for the
jailed property and limits, such as quotas. This
allows root in the container to create and manage
new datasets, snapshots, and all other features of
ZFS. Root in the jail can even take advantage of
the regular ZFS delegation feature, and further
delegate access to commands and properties to
regular users in that jail. This flexibility allows high-
concurrency multi-tenancy with relative ease.

At ScaleEngine, we use these features to allow
customers SSH access to their video storage via a
jail so that they are isolated into an untrusted con-
tainer with access to only their own files. User del-
egation and container delegation allow us to have
remote replication of customer data without
requiring any privileged access, and to isolate our
customers while still providing them unfettered
access to their own files.

Licensing1

When Sun Microsystems released ZFS as part of
OpenSolaris, they did so under the CDDL
(Common Development and Distribution License,
version 1.0). The CDDL is derived from the Mozilla
Public License (MPL) and attempts to hold a mid-
dle ground between the GPL (viral) and the BSD
license (permissive). Code licensed under the GPL
must always remain so, and any derived or com-
bined work, in source, binary, or other form, must
be licensed under the GPL. The BSD license places



Sept/Oct 2017 11

no restrictions on how the licensed code is used,
only that the copyright notices must not be
removed from the source and must be reproduced
in other formats. In contrast, source code released
under the CDDL must remain under the CDDL in
its source form, but binaries produced from it may
be licensed in any way the creator chooses, as long
as the modified source is still available under the
CDDL. Files licensed under the CDDL may be com-
bined with files licensed under other licenses,
whether open source or proprietary. Sun saw this
as giving businesses more flexibility in how they
licensed their end product, while ensuring that all
ZFS features remained open source. Combining
OpenZFS with FreeBSD under its liberal license
means not having to fret about hidden compliance
problems.

The Free Software Foundation (FSF) issued a
statement on April 11, 2016, clarifying that distrib-
uting CDDL-licensed software, ZFS specifically, as
part of a GPL-covered work (the Linux Kernel), is a
violation of the GPL license2. “It is not enough to
require that the combined program be free soft-
ware somehow. It must be released, as a whole,
under the original copyleft license (GPL).” So, while
under the CDDL license, you can combine the code
with GPL-licensed code, and produce a binary
module licensed under the GPL, this is still not
compatible with the GPL, because the combined
source code must also be released under the GPL,
a condition not allowed by the CDDL. Luckily,
these restrictions apply to redistribution, not to pri-
vate use of the code. “The GNU GPL has no sub-
stantive requirements about what you do in pri-
vate; the GPL conditions apply when you make the
work available to others.” So, you may use ZFS,
but you cannot distribute it as a complete product.
The Ubuntu project sees it differently3: “zfs.ko, as
a self-contained filesystem module, is clearly not a
derivative work of the Linux kernel, but rather
quite obviously a derivative work of OpenZFS and
OpenSolaris.” The Software Freedom Conservancy
(SFC) disagrees4. It would seem to be prudent to
avoid this legal quagmire, and just use FreeBSD,
with its simple two-clause license.

Conclusions
If the integrity of your data is important, OpenZFS
is the only open-source solution you can trust. The
best platform for running OpenZFS is FreeBSD.
Take advantage of the entire ecosystem of fea-
tures, utilities, applications, and solutions that
make FreeBSD a leading solution for servers and
storage.

If you would like to learn more about ZFS and
how to apply its advanced features to your storage
challenges, pick up copies of FreeBSD Mastery: ZFS
and FreeBSD Mastery: Advanced ZFS at your
favorite retailer or by visiting www.zfsbook.com. •

ALLAN JUDE is VP of operations at ScaleEngine Inc., a
video streaming content distribution network, where he
makes extensive use of ZFS on FreeBSD. Allan is a
FreeBSD src and doc committer, and was elected to the
FreeBSD core team in summer 2016. He is also the host
of the weekly video podcast BSDNow.tv (with Benedict
Reuschling), and coauthor of FreeBSD Mastery: ZFS and
FreeBSD Mastery: Advanced ZFS with Michael W Lucas.

The primary design considera-
tion for ZFS is the safety of the
data. Every block that is written
to the filesystem is accompa-
nied by a checksum of the data,
stored with the other metadata.
That metadata block also has a
checksum, as does its parent, 
all the way up to the top-level
block, called the uber block. 

1 This article is not legal advice and you cannot and should not rely on it as such.
2 https://www.fsf.org/licensing/zfs-and-linux
3 https://insights.ubuntu.com/2016/02/18/zfs-licensing-and-linux/
4 https://sfconservancy.org/blog/2016/feb/25/zfs-and-linux/


