[[f] [

FROM

Microservices

to Monoliths

NN | F AN

not all of it wanted.

s |
W .EEEEEE T T

AR |

1

¢

I EEEEEE] |
| R -

I

BY DAVE COTTLEHUBER

Over the last 18 months, we’ve re-platformed twice, hope-
fully without most people noticing at all. The first major
shift was for cost advantage, changing our host provider,
and the second was moving to the latest Debian release,
which brought with it a flurry of patches and changes—

here was a feeling we were beholden to our OS
Tand its patches, rather than to our customers and
our business. systemd introduced a cascade of
changes requiring changes to all of the services we
run, and the changes continue to roll in over time.

Migrating hosting providers enabled us to move
our core database servers, running Apache CouchDB
(https://couchdb.apache.org/), to much larger and
faster machines, using SSD and much more RAM.
Building indexes is faster, which allows us to deploy
code faster as well. In fact, it's now possible to cache
our entire database and indexes in RAM, which has
helped the responsiveness of our whole site.

We've always had a fairly microservices-like archi-
tecture, and it's stood the test of time. The front-end
application is written in Perl using the Catalyst
(http://www.catalystframework.org/) framework,
and communicates with workers in a variety of pro-
gramming languages, using RabbitMQ
(http://www.rabbitmg.com/) as a message broker
between services that run on several different servers.
Our two main databases, Apache CouchDB
and Kyoto Tycoon (http://fallabs.com/kyototycoon/),
have built-in replication, which provides both applica-
tion-level redundancy and also simplifies operations
when doing backups or upgrades.

Despite that, microservices introduced small
delays at every step—network latency due to
roundtrips, further reliance on stable Internet
connections, and extra conversions between
JSON and the native programming languages
used for each service. End-to-end testing of our
application was also very complicated. Something
needed to change.

The Best of Both Worlds?

We're not Twitter scale, and we don’t need the
feature set of Amazon or Google’s clouds. We're
also mindful of avoiding Cloud Lock-in. Our prof-
itability as a business won't change much if we
halve or double the infrastructure we use. We
asked, is there a way to have the best of both
worlds? The decoupling of microservices, without
the latency? The debugging simplicity of a mono-
lith, without the interruptions from continual
upgrades? Could we have the operational flexibility
of a cluster without the risk of a catastrophic melt-
down? Could we have a test environment that ran
on a laptop, but that still matched production?

Probably a number of you are mumbling
Docker (https://www.docker.com/) under your
breath. Some of you are getting sweaty palms
and thinking of Linux containers (https://
linuxcontainers.org/). But we'd tried them, and it
wasn't the answer. We spent more time trying to
get the tightly coupled container stack working
together than actually shipping code to produc-
tion, or improving the stability and reliability of
our services.

The key failure of the container vision today is
that, unless you are Google scale, where you
have a significant cost advantage from reduced
server footprint, and where you can afford a fleet
of container infrastructure engineers to keep up
with the evolving landscape, the operational
effort simply doesn’t stack up to deliver the bene-
fits. It shouldn’t be necessary to rewrite how we
do logging, monitoring, packaging, and deploy-
ment, and to dedicate engineers to maintaining
and grooming the container monster, just to sim-
plify shipping code to production.

Plain Old-fashioned Boring
Infrastructure

What we needed was some plain old-fashioned
boring infrastructure. Loosely coupled at each
layer, without introducing latency, and still allow-

ing the flexibility of the container-think move-
ment. Something that had a long support life
span if we needed it, but that didn’t compromise
our ability to keep on the front foot for patches
and security of both the OS and the apps that
came with it.

In the end, we settled on three core changes:
e move our OS from Debian Linux to FreeBSD
e switch out distributed container-style VM
microservices to paired physical servers
* migrate our Perl-based Catalyst core app over
to Elixir and Phoenix

Many of you will know of these already, but
here’s a glimpse into our thinking.

FreeBSD

FreeBSD (https://www.freebsd.org/) is one of the
original Free UNIX-like operating systems, and is
going stronger than ever. It powers Netflix's
mighty streaming servers, and is used in a modi-
fied form in Sony Playstations and Apple’s iOS
and OSX. Most Internet providers use FreeBSD in
some form. FreeBSD also has a long support life
span for the core OS while at the same time
allowing us to use the latest ports and pack-
ages—a neat mix of backward compatibility.

And to be honest, FreeBSD already had a leg-
up as a couple of us have been using it for a
while.

The three big advantages of FreeBSD for us
are zfs (http://open-zfs.org/wiki/Main_Page), jails
(https://www.freebsd.org/doc/handbook/jails.html),
and ports (https://www.freebsd.org/ports/
references.html).

zfs is arguably the leading filesystem of all
time, with great flexibility, and power including
inbuilt high-speed compression, data checksums
(no bitrot or silent data corruption), snapshots for
replication and backup. It also supports boot
environments (http://callfortesting.org/
bhyve-boot-environments/), which is a clever
snapshot-based way of managing upgrades
safely. This makes testing and ultimately deploy-
ing a new version of FreeBSD, or our apps and
services deployed upon it, largely risk-free, and
very, very simple.

FreeBSD jails are about a decade old, and simi-
lar to Linux containers conceptually. However,
there are no venture-backed companies fighting
over turf in the hope of achieving a VMWare-like
monopoly, and the software is well integrated

Sept/Oct 2017

13

into the operating system and community tooling.
The performance of jailed applications is effective-
ly the same as that of running in the main kernel,
both from a network and a filesystem standpoint.

The ports tree is a significant feature that all
BSD-derived operating systems share a massive
repository (subversion or git as you please) of
every piece of open-source software you could
possibly imagine. As our core business is providing
simplified domain purchase and management
through custom software, we are often in the
position of needing a specific version of a tool or
application, or needing custom patches deployed
immediately while we wait for the upstream
application owners to merge a patch, or for it to
trickle down into the OS distribution’s package
manager. With the ports tree, we have a custom
private repo for our own packages, and the ability
to carry and patches or to hold back specific ver-
sions for our own needs, in a very simple and
straightforward fashion. Where we've needed
new packages, or to get changes committed, it's
proved extremely simple to do so. This makes
maintaining our own infrastructure very simple
indeed—installing a handful of packages gets us
up and running much faster than in the past.

There is a fourth advantage for us, however.
The FreeBSD community is close-knit, with a rea-
sonably consistent culture about doing things
right. In practice, this means there’s very little
gap between issues we identify or knowledge we
are missing, and the developers and community
creating it. The documentation on FreeBSD itself
is part of this culture of doing things right, and
the integration between the OS itself and the
tools it ships with are the result, and we are
already looking forwards to contributing further
to the community.

Overall, as a result of moving to FreeBSD we
hope to spend significantly less effort managing
our infrastructure, and more time invested in
improving our services and business.

A Pair of Servers

FreeBSD’s jails allow us to run microservices on a
single box. Arguably this is no different from
Linux containers in practice; however, we are not
fighting to accommodate a stream of changes
that add no value to our business along the way,
and we are not forced to change out our opera-
tions tools and processes. The value to our cus-
tomers is not in having the latest container tech

FreeBSD Journal

running; it'’s in having simple and reliable services
for the infrequent times they need to acquire or
manage their domains throughout the year.

In each region, we are deploying a pair of
physical servers, each one providing the same
services and applications. Within each pair, we are
using DNS round-robin name resolution
and CARP, a low-level IP availability solution built
into FreeBSD, to provide load balancing and
failover at a network level between our boxes.

The next layer up in the paired server stack is
the awesome haproxy (http:/Avww.haproxy.org/)
load balancer, which we use to ensure that we
direct our users to the closest and best-perform-
ing application server. haproxy also allows us to
dynamically remove and add back-end services
from the pool, whether during deployment or
maintenance, and communicates across the clus-
ter to maintain a transparent view of services for
our customers.

This consolidation brings disparate virtual
machines back onto the same server, while still
using FreeBSD jails to maintain the microservices-
like separation. Luckily, none of our apps have
required major changes to make them run on
FreeBSD—UNIX standardization has been a huge
benefit here. When this is complete, we'll have
significantly reduced our app latency by removing
the network round-trips that we have today.

The key difference here from the Docker-style
container architecture is that there is very little
coordination or dependency between these layers.

CARP is fundamentally a network protocol, and
we could easily disable it should there be any
issues, or choose some other facility. haproxy could
be replaced by nginx (http://nginx.org/) which we
already use today for slightly different functionali-
ty. zfs provides an incredible filesystem, available
within jails and to the core operating system, as a
solid and reliable platform for our services and
your data. Logging, monitoring, and upgrades are
all done using the same decoupled tools using
well-known UNIX standards in place for
decades—and there’s nothing wrong with pre-
serving that simplicity where it suits us.

Elixir and Phoenix

Since almost the beginning of iwantmyname, the
programming language Erlang/OTP
(http://www.erlang.org/) has been at the heart of
things. It's the programming language

that Apache CouchDB is developed in, as well

as RabbitMQ, our message broker, and our

core search (https:/iwantmyname.com/
?domain=) application is also written in Erlang. Its
robustness has shown time and time again as it
transparently deals with issues such as transient
connection failures to our API partners, and it has
generally required significantly less maintenance
effort than our other services. As a concurrent
functional language with soft-real-time character-
istics, it is ideally suited to building websites and
services that make heavy use of asynchronous
internal and external APIs.

Our front-end app, written in Perl's Catalyst
(http://www.catalystframework.org/) framework,
was leading edge when we first started using it,
but it's become more and more of a hindrance in
evolving to a more robust, mobile first system.
Perl's forking worker model means that we use a
significant amount of RAM across our infrastruc-
ture just to ensure we can handle what is definite-
ly not “web scale” user and network load.

After experiencing several years of solid Erlang
reliability, we picked Elixir (https:/elixir-lang.org/), a
new functional programming language that runs
on the same Erlang VM, and the Phoenix
(http://phoenixframework.org/) web framework
written in the same language, to upgrade and
eventually replace our front-end application.

Erlang’s BEAM virtual machine provides Elixir,
and Phoenix, with a screamingly fast, robust, and
reliable concurrent web framework, without the
memory overhead of a forking model, that is able
to handle many concurrent connections transpar-
ently. Both Erlang and FreeBSD are used heavily by
WhatsApp, and they shot to worldwide notice
(https://duckduckgo.com/html/?g=erlang+
whatsapp) when Facebook acquired the low-
staffed app.

Live Debugging
Sometimes stuff breaks in production for no
apparent reason, and we need to know why—in a
hurry. In recent months, we traced and debugged
transient Internet outages, upstream APl changes,
timeouts and failures, unanticipated third-party
library concurrency model changes, and much
much more—much pain and frustration!
Debugging was a painful process, usually involv-
ing reading all the log files, using low-level Linux
tools like strace, all the while inserting print state-
ments and redeploying furiously while trying to
understand the underlying issues from the result-

ing flood of information.

Aside from being able to roll back safely any
changes using boot environments (http:/
callfortesting.org/bhyve-boot-environments/) and
packages, our new stack provides some incredible
introspective live debugging capabilities, which
makes it easier for us to deal with problems in
real-time and without downtime, and most impor-
tantly without needing to change compiler set-
tings or edit our production code on the fly. These
advantages alone would be reason enough to
move. The Erlang VM provides a native erlang
tracing (http://erlang.org/doc/man/dbg.html) library,
and the community has extended this with erlang
dtrace (http://erlang.org/doc/apps/runtime_tools/
DTRACE.html) support, and the delightful recon
(https://ferd.github.io/recon/recon_trace.html).
FreeBSD itself supports natively DTrace
(http://dtrace.org/blogs/), the powerhouse intro-
spection tool first developed for Sun Solaris, and
since ported to several other platforms.

We've dubbed this setup the “FRECK Stack”—
FreeBSD, RabbitMQ, Elixir, CouchDB, Kyoto
Tycoon. Yes, we had some closely related abbrevia-
tions in mind, but we managed to control our
childish mirth.

Looking Ahead

At the end of the day, iwantmyname (https:./
iwantmyname.com/) is a domain registrar, and
when it comes to domains, a “plain old boring
infrastructure” is exactly what we—and you—
should want.

With FRECKS, we're now more stable and more
secure than we've ever been—allowing us to truly
focus our brain muscles on overdue Ul and UX
upgrades. More changes to our iwantmyname plat-
form are coming, but behind the scenes; it'll hope-
fully be smooth sailing out front—touch wood! e

DAVE COTTLEHUBER enjoys building and sup-
porting distributed systems, especially when he
can use both Elixir and FreeBSD. He shaves yaks
at https://iwantmyname.com/, a domain reseller
based in New Zealand. He lives in Vienna, Austria,
with his wife and three boys, next to a lake.

In his free time, he drinks Zwickl], eats schnitzel,
wears lederhosen, and contributes to a

number of open-source projects.

Sept/Oct 2017

