
24 FreeBSD Journal

Getting Started with Prometheus
Though Prometheus can already be installed very easily using Go’s build utility (go get), there is also
a version that is packaged by the FreeBSD ports collection. One advantage of installing this package is
that it ships with an rc(8) script that allows us to easily run it as a daemon. 
Prometheus should be up and running after running the commands below:

Monitoring and Trending
with Prometheus

S E E
T E X T
O N L Y

Founded in 2012 by software engineers at SoundCloud, Prometheus is a monitoring
system whose design has been inspired by Borgmon, the system that keeps an eye on
jobs running on Google’s internal Borg cluster. Here, we’ll discuss how Prometheus
works, following a hands-on approach. In the process, we’ll also look at some other
tools that are often used in conjunction with Prometheus, such as Grafana and some
of the metrics exporters. At the end of the article, we’re also going to look at an
automation tool that we are developing and will release as open-source software in
the near future, called Promenade.

B Y  E D  S C H O U T E N

$ pkg install prometheus
…
New packages to be INSTALLED:

prometheus: 1.7.1
…
Proceed with this action? [y/N]: y
…
$ sudo /usr/local/etc/rc.d/prometheus forcestart
Starting prometheus.



Star t ing Prometheus
By default, Prometheus binds a HTTP server on port 9090. If we point our browser to this server, we are
presented with a page on which we can explore the data stored in Prometheus. As we’ve just fired up this
instance, there will, of course, be little data to explore. Let’s leave this page alone for now and head over
to the “targets” page (2 screenshots below).

The targets page shows us which endpoints are being monitored by Prometheus, and already reveals
something interesting. This instance of Prometheus has been configured to monitor itself. Prometheus is a
white box monitoring system, which means that it can store metrics that are reported by targets them-
selves, as opposed to only measuring externally visi-
ble factors (e.g., TCP and HTTP health checks). By
clicking on the HTTP link in the leftmost column, we
can take a look at the raw metrics generated by the
Prometheus server: stats related to the Go runtime’s
garbage collecting, threading, HTTP handling, and
metrics storage (screenshot right).

Prometheus’s format for serving metrics over the
network is rather simple. Each metric is placed on a
single line of a HTTP response and has a numerical,
64-bits floating-point value. Metrics are uniquely
identified by a name and an optional set of labels
placed between curly brackets (key-value pairs).
Labels allow a program to return multiple metrics of the same name. For example, a web server could use
labels to return HTTP statistics per registered virtual host or per HTTP error code class (e.g., latency of just
the HTTP 200s for “www.freebsd.org”).

To distinguish between identically named metrics returned by separate targets, Prometheus attaches
additional labels while ingesting, such as job and instance. These labels contain values that uniquely
identify the endpoint. The values for these labels are shown on Prometheus’s targets page. At Kumina, we
use this mechanism to attach custom labels relevant to our environment, such as physical location (data
center name), system ownership (customer name), and support contract (24/7 or office hours only). These
labels can then be used as part of queries and alert conditions.

On its own, Prometheus is not capable of obtaining any operating system metrics, such as CPU load,
disk usage, and network I/O. It is a tool that is capable only of ingesting metrics over HTTP and indexing
them. System-level metrics are instead provided by a tool called the node exporter. The node exporter is
nothing more than a web server that, when visited, extracts kernel-level state through /dev, sysctl,
libkvm, etc. and returns it in Prometheus’s metrics format. Installing the node exporter on FreeBSD is
quite easy:

$ sudo pkg install node_exporter
…
$ sudo /usr/local/etc/rc.d/node_exporter forcestart
Starting node_exporter.

$ sudo pkg install node_exporter
…
$ sudo /usr/local/etc/rc.d/node_exporter forcestart
Starting node_exporter.

Nov/Dec 2017 25



26 FreeBSD Journal

Once started, we want to extend Prometheus’s configuration to scrape the node exporter as well. By
default, the node exporter listens on port 9100.

After restarting
Prometheus and refreshing
the targets page, we can see
that it now scrapes two tar-
gets, which is what is
expected (right):

In addition to the node
exporter, there are many
other targets we could at
this point configure. There
exist exporters for most
commonly used services
(e.g., MySQL, Nginx, Java
JMX) that convert metrics
from their native format and
serve them over HTTP. The
Prometheus black box
exporter can perform ICMP,
DNS, TCP, HTTP, and SSH checks and report availability and latency. FreeBSD 12.x ships with
prometheus_sysctl_exporter(8), a tool that can serve values of arbitrary sysctls. Some of these
exporters are officially maintained by the Prometheus project, while there are many others that are main-
tained by the community.

At Kumina, we have developed exporters for services including Dovecot, PHP-FPM, libvirt, OpenVPN,
and Postfix. We have also designed a simple network traffic accounting daemon based on libpcap that
exports per-address statistics, called Promacct. All of these tools are available on our company’s GitHub
page (https://github.com/kumina).

If you want to use Prometheus to obtain metrics from software that is being developed in-house, there
is no need to make use of separate metrics exporter processes. The Prometheus project provides client
libraries for various programming languages (Go, Java, Python, Ruby, etc.) that make it possible to directly
annotate your code with metrics objects. For languages like Python and Java, these libraries also provide
convenient function decorators to automatically count function invocations and create histograms of their
running times.

PromQL: Prometheus’s Query Language
After letting Prometheus gather metrics for a couple of hours, we can
head over to the graphing page to explore Prometheus’s dataset. Let’s
start off by graphing a single metric that is generated by the node
exporter, node_network_receive_packets. As the name suggests,
this metric corresponds with the number of network packets received by
the system’s network interfaces. This expression produces a graph with
two lines on my system: one for the loopback interface
(device=“lo0”) and one for the physical interface (device=“em0”).

$ sudo vim /usr/local/etc/prometheus.yml
<!-- Add the following entry under “scrape_configs”: -->

- job_name: 'node_exporter'
static_configs:

- targets: ['localhost:9100']
$ sudo /usr/local/etc/rc.d/prometheus onerestart
Stopping prometheus.
Starting prometheus.



Nov/Dec 2017 27

If we wanted to plot metrics only for certain hosts or network inter-
faces, we could append filters to the end of the expression. For example,
appending {device!~“lo[0-9]+”} to our query would remove met-
rics for loopback devices by making use of negative regular expression
matching. {datacenter=“frankfurt”} would only give us results
for systems in a single data center, if such a label were to exist.

Graphing the number of network packets directly doesn’t seem to
show us anything useful; it only renders two diagonal lines. The reason
for this is that the node exporter reports the number of network packets
as a counter that accumulates over time. Only when the system running
the node exporter reboots (or an integer overflow of the counter
occurs), it resets to zero. By letting an exporter use cumulative counters,
it may safely be scraped by multiple Prometheus servers. It also makes
exporters oblivious of the scraping interval configured on the
Prometheus server. Even if the Prometheus server needs to reduce the
number of scrapes due to high load, no packets will remain unmeasured.

In order to convert the number of packets into something meaningful,
we will first need to compute its derivative. This can be accomplished by
performing two operations on the metric. First of all, instead of querying
for the metric’s scalar value, we’re going to request vectors of consecu-
tive samples, called range vectors. We can then use the rate() func-
tion to turn those range vectors back into scalars, representing the rate
of increase of a range vector per second. The size of the range vectors
used will determine the smoothness of the resulting graph. Five-minute
range vectors are good for spotting brief bursts of traffic, whereas one-
hour range vectors can visualize daily traffic curves. At Kumina, we even
use 7-day and 31-day range vectors for long-term network and CPU
capacity planning. When changing the graph expression to

rate(node_network_receive_packets[5m]), we get a graph that shows the number of received
packets per second, using a 5-minute rate computation.

Prometheus’s query syntax also supports aggregation operations with which we can reduce the num-
ber of metrics graphed. For example, the query
sum(rate(node_network_receive_packets[5m])) by (instance) will compute bandwidth
per server, as opposed to showing bandwidth per network interface. The query 
topk(10, rate(node_network_receive_packets[5m])) by (datacenter) will limit the 
output to just the top 10 per data center.

Creating Dashboards with Grafana
Though Prometheus’s built-in web application is all right for running queries interactively, it is often
desired to design dashboards that show graphs in an organized way. Prometheus used to ship with a fea-
ture called Promdash that allowed the server to serve templated HTML files. This feature has been
removed in the meantime, as there are now various third-party dashboard tools that can interface with
Prometheus directly, the most prominent one being Grafana. Getting Grafana to work on FreeBSD essen-
tially follows the same recipe as what we’ve seen before:

With its default settings, Grafana will spawn a web server that listens on TCP port 3000. After point-
ing our browser to it and logging in with the default credentials (username “admin”, password
“admin”), we are presented with Grafana’s home screen. The first thing we’d want to do is click on
“Add data source” to configure the address of the Prometheus server that Grafana should use to fetch
data—in our case, http://localhost:9090/.

$ sudo pkg install grafana4
…
$ sudo /usr/local/etc/rc.d/grafana forcestart
Starting grafana.



28 FreeBSD Journal

Once completed, we can click on the next button on the home screen, titled “Create your first dash-
board”. We then get presented with an empty dashboard page on which we can place panels, such as
graphs, tables, heat maps, and lists. In the case of Prometheus, using graphs makes sense most of the
time. When creating graphs, we can use the same query syntax as we’ve used before. By pressing the
save icon at the top of the page, the dashboard gets saved on the Grafana server.

Depending on the specifications of your hardware, you may notice that dashboards will take a longer
time to render as the number of graphs increase and graph queries become more complex. Executing
many complex queries at the same time may cause a significant load on the Prometheus server. To solve
this, Prometheus has the option to pre-compute complex queries while scraping and store its result
under a different name, using recording rules. As a rule of thumb, you should use recording rules for
graph queries as soon as they are more complex than simple selection expressions.

The commands above show how Prometheus can be configured to make use of recording rules. In
this example, we’re adding a recording rule called my_recording_rule, which may from now on be
used in graph queries. Recording rules can be named arbitrarily, but to improve readability, it makes
sense to apply some best practices. The Prometheus documentation has an article on the naming
scheme suggested by the developers. For the recording rule above, the Prometheus documentation sug-
gests it should be named instance:node_network_receive_packets:rate5m.

$ sudo vim /usr/local/etc/prometheus-rules.yml
<!-- Add the following contents: -->
my_recording_rule =

sum(rate(node_network_receive_packets[5m]))
by (instance)

$ sudo vim /usr/local/etc/prometheus.yml
<!-- Add the following entry under “rule_files”. -->

- prometheus-rules.yml
$ sudo /usr/local/etc/rc.d/prometheus onerestart



Nov/Dec 2017 29

Aler t ing
In addition to graphing, Prometheus is also capable of generating alerts based on metric values. Alerts can
be configured by declaring alerting rules that may be placed in the same file as recording rules. Below is
an example of what an alerting rule looks like:

This alert will trigger if a metric called “up” has the value zero for at least 15 minutes. The “up” metric
is created by Prometheus implicitly to denote whether it has been able to scrape a target successfully.
Labels that are part of the metric used in the alerting expression will also get attached to the alert itself.
These labels are useful for formatting user-friendly alert messages, but also to create “silences”, patterns
for alerts that should be suppressed temporarily (e.g., due to planned maintenance). Prometheus will show
all registered alerting rules and their state on its “Alerts” page.

To keep its design simple, the Prometheus server only supports a single mechanism for announcing
active alerts, namely by sending REST calls to some other service. The Prometheus project provides a sepa-
rate daemon called Alertmanager that can process these REST calls, generate email, SMS, and Slack mes-
sages, and manage silences. The URL that Prometheus uses to perform REST calls can be configured
through the --alertmanager.url command line flag. It may also be necessary to set the 
--web.external-url flag to the public URL of the Prometheus server, so that Alertmanager can add
clickable links to its alert messages that point back to Prometheus.

Federation: a Hierarchy of Prometheus Servers
There are scenarios in which it is undesirable to use a single Prometheus server to collect metrics for all of
your infrastructure. The number of targets to scrape and metrics to ingest may become too large for a sin-
gle Prometheus instance. Targets may also be spread out geographically, meaning there is not a single
location from which all targets can be scraped reliably. To solve this, Prometheus servers can receive HTTP
GET requests on /federate?match[]=... to print selected stored metrics in its own format, allowing
them to be ingested by other servers.

In practice, you see that this mechanism is often used to introduce hierarchy. A service that is distrib-
uted across multiple data centers may have one Prometheus server per location, scraping only the systems
nearby. These Prometheus servers then use recording rules to aggregate key metrics for the entire data
center, which are then scraped by a global Prometheus server. With root causing problems, one can first
investigate the dashboards provided by the global Prometheus instance to determine which data centers
are affected. Access to metrics on a system level can be obtained by switching to the appropriate local
instance.

An advantage of such a hierarchical setup is that it may reduce disk space usage significantly. Local
Prometheus instances can be configured to use volatile storage and have a short retention period (days),
whereas the global instance may make use of persistent storage and have a very long retention period
(years), as it only needs to hold on to a tiny fraction of the data. Storing data for multiple years is useful
for long-term capacity planning.

Creating Dashboards from Python with Promenade
At Kumina, we’ve noticed that managing recording rules on a large scale may be quite challenging.
Refactoring Prometheus configuration files always has a risk of breaking existing Grafana dashboards,
especially because dashboards are stored in a web-based tool, as opposed to being stored in a version
control system next to the Prometheus configuration files. We’re therefore working on implementing a
utility to configure Prometheus and Grafana installations programmatically, called Promenade. With

ALERT TargetFailedToScrape
IF up == 0
FOR 15m
LABELS { severity = "page" }
ANNOTATIONS {

summary = "Instance {{ $labels.instance }} is down!",
playbook_url = "http://intranet.company.com/...",
...

}



30 FreeBSD Journal

Promenade, you can write Python classes that declare Grafana dashboards as follows:

An interesting aspect of Promenade is that it can take a hierarchy of Prometheus servers into account,
which can also be declared as Python code. In the code below, we first declare a DAG (Directed Acyclic
Graph) of how labels on metrics are related to each other (e.g., all metrics with the same “datacenter”
label value will also have the same “country” label value). We then declare a hierarchy of Prometheus
server objects for which we want to generate configuration files.

When combining the Python code for our dashboard with this hierarchy, Promenade will automatically
create the following recording rule on the local Prometheus instance:

class UnboundMetricsBuilder:
def construct(self):                                                   

yield Dashboard(
title='Unbound',
rows=[

DashboardRow(title='Queries', graphs=self._row_queries()),
...

])
def _row_queries(self):

yield Graph(
title=’Query rate per data center’,
queries=[

GraphQuery(
expression=Sum(

expression=Rate(
expression=Metric(‘unbound_queries_total’),
duration=datetime.timedelta(minutes=5)),

by={‘datacenter’}),
format=‘Data center %(datacenter)s’)

],
unit=Unit.OPERATIONS_PER_SECOND,
stacking=Stacking.STACKED,
width=WIDTH_FULL // 2)

yield Graph(
...

label_implications = LabelImplications({
('instance', 'customer'),
('instance', 'rack'),
('rack', 'datacenter'),
('datacenter', 'country'),
...

})

local = ScrapingRecordingServer(label_implications)
global = CompositeRecordingServer(

label_implications, ‘datacenter’, {local}, ...)

datacenter:unbound_queries:rate5m =
sum(rate(unbound_queries_total[5m]))
by (datacenter, country)



It will also generate a configuration file for the global Prometheus instance, so that it will scrape
datacenter:unbound_queries:rate5m from all of the local instances, which allows Grafana to
access them.

At Kumina, we are currently migrating all of our existing Prometheus and Grafana setups to be built on
top of Promenade, which is why the design of Promenade is still being tweaked to meet our require-
ments. We are planning on releasing it on our company’s GitHub page (https://github.com/kumina) as
soon as the code has stabilized, so stay tuned!

Wrapping Up
We hope that this article gives a good impression of how easy
it is to get started with using Prometheus to monitor your sys-
tems. At Kumina, we have been happy users of Prometheus for
about a year now. It is a robust, flexible, and extensible moni-
toring system, having a healthy ecosystem of both developers
and users. Within the next couple of months, we will see the
release of Prometheus 2.0, which will include lots of new fea-
tures. At Kumina, we are most excited about the redesign of
the storage layer, which will allow us to collect millions of sam-
ples per minute on servers with commodity hardware.

Since 2016, the Prometheus team has organized an annual
conference called PromCon (https://promcon.io/). This year it
took place in Munich, Germany, on August 17–18. If you are
interested in knowing more about some of the latest develop-
ments taking place in the Prometheus project, be sure to check
out the conference’s website, as recordings of all of the talks
are publicly available. •

Nov/Dec 2017 31

ED SCHOUTEN is the lead software
developer at Kumina, a managed
services provider and consultancy
firm based in Eindhoven, the
Netherlands. Kumina provides com-
panies with fully managed plat-
forms and offers support, training,
and consultancy for Prometheus
and Kubernetes. 
Feel free to visit our website
https://kumina.nl/ or contact us at
info@kumina.nl to tell us about
your project or request more infor-
mation about our offerings.

ED SCHOUTEN is the lead software
developer at Kumina, a managed
services provider and consultancy
firm based in Eindhoven, the
Netherlands. Kumina provides com-
panies with fully managed plat-
forms and offers support, training,
and consultancy for Prometheus
and Kubernetes. 
Feel free to visit our website
https://kumina.nl/ or contact us at
info@kumina.nl to tell us about
your project or request more infor-
mation about our offerings.

T

Write 
For Us!
Write 

For Us!
JOURNAL

TM

TM

Contact Jim Maurer (jmaurer@freebsdjournal.com )
with your article ideas.

TM


