
14 FreeBSD Journal

S E E
T E X T
O N L Y

D
uring the early ages of network moni-
toring, there was a monitoring soft-
ware called Netsaint, which was later
renamed to Nagios for legal reasons.

While Nagios was very successful in the open-
source world, patches from the community were
often rejected or added very slowly. In 2009,
members of the Nagios community created a fork
that was named Icinga (Zulu for: it “examines").
Since the release of Icinga 2.0 in 2014, it is no
longer a fork of Nagios, but a complete rewrite
with new features like distributed monitoring, HA-
Clustering, a REST API, and more. Icinga can reuse
all Nagios monitoring plugins, while providing a
modern web interface and powerful extensions to
its core functionality.

Installation on FreeBSD/ZFS
In this article, we will walk through a setup of
Icinga and Icinga Web 2 on FreeBSD to monitor
hosts. The configuration data, events, and user
authentication will be stored in a PostgreSQL
database (MySQL is also available by default).
NGINX will serve the web pages for Icinga Web 2.
It is assumed that there is a FreeBSD base installa-
tion already installed and that it is connected to
the network, able to download packages and

reach other hosts via ping and ssh. This setup
has been tested on a Raspberry Pi 3, as well as on
a regular server without requiring any special
hardware or tuning parameters.

The Icinga documentation (https://
docs.icinga.com) has an excellent description of
the necessary Icinga installation steps and even
provides FreeBSD-specific instructions (when paths
are different, for example). A FreeBSD port/pack-
age is also available and already includes some
steps that users of other Unix distributions must
still perform.

The easiest way to install Icinga 2 on FreeBSD is
to use the package net-mgmt/icinga2. This guide
uses # in front of commands that should be per-
formed by the root user and $ for a non-root
user. Alternatively, sudo can be used to tem-
porarily elevate privileges and to execute com-
mands as another user.

Installing Icinga 2
We begin by installing a couple of packages
required for the setup (see Box 1). Icinga 2 will
install the basic monitoring components. Icinga
Web 2 is an optional component to display events
and check results in a browser-based dashboard.
PostgreSQL 9.5 is the database server being used

Note

This guide concentrates on getting Icinga 2 up and running, and won’t focus on performance,
SSL setup, and other security options (other than passwords). This is left as an exercise for the

reader, once you have become more familiar with Icinga 2 and its features.

. .

What is Icinga?
By Lars Enge ls and Benedict Reusch l ing

Nov/Dec 2017 15

by the package at the time of this writing. Although the setup of NGINX is described here, Apache 2 users
can run Icinga Web 2 just as well.

The packages ImageMagick-nox11 and pecl-imagick are installed separately, as they are not pulled in as
dependencies by default. When we start to configure Icinga Web 2, it will complain about these missing
components when they are not installed. They are needed to create graphs in the PDF output when generat-
ing reports. Without them, the report PDFs will have stats and metrics in textual form only. Other dependen-
cies like PHP, which is used by Icinga Web 2, will be pulled in automatically by the packages listed here.

After all components have been installed, we add entries using sysrc(8) (see Box 2) to
/etc/rc.conf so that these components will be automatically started upon reboot.

Setting up PostgreSQL
Before we begin setting up the PostgreSQL database and create users for Icinga, we create a ZFS dataset to
hold the data (UFS users can just use mkdir to follow along). Replace monitor with the name of your
pool in the following examples:

The more systems are being monitored, the more writes to the database will be performed, so we tune
ZFS accordingly. With these settings, the database transactions will not only be compressed on disk, but will
also honor the metadata settings the database uses, so ZFS will not assume to know any better than
PostgreSQL when it comes to writes to disk.

Now it is time to log in as the pgsql user and create the database cluster by running initdb with the
data directory (dataset) that we just created:

We create a new database user icinga, a database with the same name, and assign the icinga user
as the owner. Provide a password for the icinga user when asked. It is required later when we set up Icinga
Web 2, so make sure to not forget it.

The pg_hba.conf file was generated when initdb was executed and controls which user can access
the database. To allow the icinga user to connect only locally to the database, edit the pg_hba.conf file in
data and add the following lines:

sysrc icinga2_enable=yes
sysrc postgresql_enable=yes

zfs create -o mountpoint=/usr/local/pgsql/data monitor/pgdata
zfs set compression=lz4 monitor/pgdata
zfs set recordsize=8k monitor/pgdata
zfs set logbias=throughput monitor/pgdata
zfs set redundant_metadata=most monitor/pgdata
zfs set primarycache=metadata monitor/pgdata
chown pgsql:pgsql /usr/local/pgsql/data

su pgsql
$ cd
$ initdb -D ./data -E UTF8
$ pg_ctl start -D ./data

$ createuser -dPrs icinga
$ createdb -O icinga -E UTF8 icinga

local icinga icinga md5
host icinga icinga 127.0.0.1/32 md5
host icinga icinga ::1/128 md5

pkg install icinga2 icingaweb2 postgresql95-server nginx ImageMagick-nox11 pecl-imagickBox
1

Box
2

Box
3

Box
4

Box
6

Box
5

The icinga database needs a couple of tables, indices, and references before it can record the monitoring
data from the hosts. This schema is provided by the port/package and located in
/usr/local/share/icinga2-ido-pgsql/schema/pgsql.sql. The psql command interpreter is
used to execute the SQL-script directly:

After the script was executed successfully, the database-specific configuration steps are done. Log out of
the pgsql user before continuing. Icinga connects to the database via IDO (Icinga Data Out to
Database) and Icinga needs to know about this. Icinga 2 has a plugin-like interface that can enable and
disable features. For IDO to work with the PostgreSQL database, we need to enable the ido-pgsql fea-
ture. Another feature that is needed is called command. Afterwards, Icinga 2 is started for the first time.

Icinga is basically running now and will perform checks for the local machine. Having a nice dashboard to
get an overview of any reports and any incidents is much better, so we configure Icinga Web 2 and the
NGINX webserver next.

Configuring NGINX for Icinga Web 2
Icinga Web 2 is running on PHP, and we will use PHP FPM to make it work with NGINX. First, we enable
php-fpm and nginx to start when the system is rebooted:

Then, we use a couple of sed commands to configure the php-fpm configuration file. The first line lets
it listen to the local domain socket and the three lines below it uncomment owner, group, and mode
options to use the ones provided by FreeBSD (i.e., the www user and the default permissions for the socket).

Icinga Web 2 provides an example file for nginx.conf in /usr/local/share/examples/
icingaweb2/nginx/icingaweb2.conf. We take the relevant portions and put them before the
location / { line in /usr/local/etc/nginx/nginx.conf:

$ psql -U icinga -d icinga < /usr/local/share/icinga2-ido-pgsql/schema/pgsql.sqlBox
7

icinga2 feature enable ido-pgsql
icinga2 feature enable command
service icinga2 start

Box
8

sysrc php_fpm_enable=yes
sysrc nginx_enable=yes

Box
9

sed -i '' "s/listen\ =\ 127.0.0.1:9000/listen\ =\ \/var\/run\/php5-
fpm.sock/" /usr/local/etc/php-fpm.conf
sed -i '' "s/;listen.owner/listen.owner/" /usr/local/etc/php-fpm.conf
sed -i '' "s/;listen.group/listen.group/" /usr/local/etc/php-fpm.conf
sed -i '' "s/;listen.mode/listen.mode/" /usr/local/etc/php-fpm.conf

Box
10

location ~ ^/icingaweb2/index\.php(.*)$ {
fastcgi_pass 127.0.0.1:9000;
fastcgi_pass unix:/var/run/php5-fpm.sock;
fastcgi_index index.php;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME /usr/local/www/icingaweb2/public/index.php;
fastcgi_param ICINGAWEB_CONFIGDIR /usr/local/etc/icingaweb2;
fastcgi_param REMOTE_USER $remote_user;

}
location ~ ^/icingaweb2(.+)? {

alias /usr/local/www/icingaweb2/public;
index index.php;
try_files $1 $uri $uri/ /icingaweb2/index.phpis_argsargs;

}

Box
11

16 FreeBSD Journal

Nov/Dec 2017 17

PHP needs to be configured as well. Fortunately, FreeBSD provides a configuration file for PHP with
reasonable settings for production use, aptly named php.ini-production. We copy this file to the
location of the php.ini file:

One line still needs to be added to let PHP know which time zone it is in. Substitute the example below
with the time zone in which your monitoring server is located.

Time to start both PHP-FPM and the NGINX webserver:

If everything works, open a browser and point it to the following URL to begin the Icinga Web 2 config-
uration: http://local.domain.or.ip/icingaweb2/setup.

If something went wrong, retrace the steps above and have a look at the log files located in
/var/log/icinga2 for any clues about what went wrong. Log rotation examples for newsyslog can be
found under /usr/local/share/examples/icinga2/newsyslog.

Now, let’s configure the Icinga Web 2 dashboard.

Configuring Icinga Web 2
The first welcome screen asks for the setup token. This is done to prevent someone from accidentally
stumbling onto the freshly installed Icinga server and misconfiguring it (remember this could be the evil
Internet). To create the necessary setup token, run the following commands:

Copy the setup token that is being echoed on the screen and enter it in the setup token field. Click Next
to continue. The next screen will show what kind of modules the installation has detected. Make sure that
at least “Monitoring” is checked, and click Next. To make sure the Icinga installation runs with all the
required components (mostly PHP modules), Icinga will provide an overview page of what it detected in the
local installation. When following this guide, most of these fields should be green, meaning that the mod-
ule is present and can be used. The “Linux Platform” field can be safely ignored, as the software runs just
as well on FreeBSD. Click Next once more.

This screen asks how users will authenticate against Icinga Web. We’ll use the PostgreSQL database we
set up earlier, but LDAP works just as well for corporate environments. After selecting “database,” we’ll
continue to the next page where we’ll enter our connection information for it. Make sure to select
“PostgreSQL” as the database type; localhost and the port should already be correct. Enter “icinga” as
the database name. The user and password is the same we provided in the postgresql setup above. Enter
UTF-8 as the encoding. You can decide whether you want a persistent connection to the database, which
is usually a good idea when using the web interface often. You can validate the connection to see whether
everything works before continuing on to the next page.

This page asks which authentication backend to use, and should already provide a default entry. More
authentication backends can be added later in Icinga Web 2, so just continue here. Enter the credentials
(username and password) for the administrative user account on Icinga Web 2 in the next screen. Make
sure to remember the password before continuing.

The following screen deals with debugging (whether stacktraces should be created, which are user-visi-
ble), where settings are stored, and how logging should be done (logging type and log level). Logging to a
separate file is a good idea if syslog shouldn’t be cluttered with Icinga 2 messages. Run mkdir
/var/log/icingaweb2 followed by chown www:www /var/log/icingaweb2 when switching to

cp /usr/local/etc/php.ini-production /usr/local/etc/php.iniBox
12

echo “date.timezone = Europe/Berlin” >> /usr/local/etc/php.iniBox
13

service nginx start
service php-fpm start

Box
14

/usr/local/www/icingaweb2/bin/icingacli setup token create \
--config=/usr/local/etc/icingaweb2

chown -R www:www /usr/local/etc/icingaweb2

Box
15

18 FreeBSD Journal

“file” so that the web interface is able to write its logs there.
The next page summarizes all your settings, and when you are satisfied with these, go to the next page

to configure to monitoring component. The backend is IDO, which we already used for the PostgreSQL
database, so we just continue on from here. We want to store all monitoring information in PostgreSQL,
so we have to enter the same connection information we used earlier. Confirm that the settings are cor-
rect by validating them before hitting the Next button.

The command transport is important when multiple instances of Icinga are being used, but in our case,
we accept the local file transport settings and continue on. No need to make changes to the defaults pro-
vided in the variables to be protected. Another summary page follows before we can finally finish the
setup for Icinga Web 2 and log in for the first time. Use the administrative account created earlier in the
setup to get to the monitoring dashboard.

Monitoring Hosts and Services
Monitoring is a complex topic and Icinga has many different ways to monitor a remote system. The Icinga
2 documentation has plenty of examples available.

The easiest way is via simple ping checks, which we’ll configure for an example host.
Open /usr/local/etc/icinga2/conf.d/hosts.conf and add an entry like this (Box 16):

Replace “Example” and “IP-ADDRESS” with
the hostname and IP address, respectively. After sav-
ing and exiting the file, let Icinga 2 check its config
(# service icinga2 configcheck) and
restart the icinga2 service. The Icinga Web 2 inter-
face should now display a new pending host in the

dashboard, and a short time later, the host should be regularly checked by pings. In case the host is down,
Icinga 2 will display a warning in the dashboard and remove it once the host can be reached again.

Icinga Can Do Even More...
Icinga can be extended with more functionality beyond monitoring machines and their services. For exam-
ple, in complex environments, where there are a lot of objects being monitored in a hierarchical fashion, a
business process module can help visualize them. This way, many thousands of cloud machines that form
the basis for a service can be viewed from a high-level dashboard. In case there is an alert, the module
allows you to drill down to the exact machine that is triggering the alert. [https://github.com/Icinga/icin-
gaweb2-module-businessprocess]

Icinga Director makes it easy to handle Icinga 2 configurations. By allowing users the flexibility to create
their own objects by “point & click,” while at the same time completely automating their datacenter,
sysadmins can be sure their monitoring solution grows with higher demands for their infrastructure.
[https://github.com/Icinga/icingaweb2-module-director]

Another module adds a generic trouble ticket system (TTS) functionality to Icinga 2. It allows the
replacement of ticket patterns in Icinga Web 2 with links to a trouble ticket system (TTS). It defines a ticket
hook that can be used by the core monitoring module and others for acknowledgements, downtimes, and
comments. [https://github.com/Icinga/icingaweb2-module-generictts]

Lastly, system administrators dealing with systems distributed in many geographical locations can get a
better overview with the map module for Icinga Web 2. It uses OpenStreetMap data to display host
objects and their status on a map. Multiple hosts at the same location are clustered together. There is a
custom host action to locate a specific host on the map. Clicking on a host marker will open a pop-up that
will display that host services’ current status. [https://github.com/nbuchwitz/icingaweb2-module-map]

Also, there’s a module that integrates Grafana graphs into Icinga Web 2 so you can display your check’s
performance data in an attractive way. [https://github.com/Mikesch-mp/icingaweb2-
module-grafana]

All of these additional modules are available as FreeBSD ports/packages. Make sure to study the Icinga 2
documentation to monitor your hosts and services in an effective way. •

object Host "Example" {
import "generic-host"
address = "IP-ADDRESS"

}

Box
16

BENEDICT REUSCHLING joined the FreeBSD Project in 2009.
After receiving his full documentation commit bit in 2010, he
began mentoring others to become FreeBSD committers. He
is a proctor for the BSD Certification Group and is currently
serving as vice president for the FreeBSD Foundation.

LARS ENGELS has been a
FreeBSD ports committer for 10
years and is also loosely involved
in the Icinga project.

