
4 FreeBSD Journal

S E E
T E X T
O N L Y

T ransport layer multipathing allows multiple physical connections to be exposed as one trans-
port protocol connection. For example, the iSCSI protocol defines optional support for multi-
ple connections per session (MC/S), when SCSI requests and responses are distributed
between several TCP connections and are visible to upper SCSI layers as a single initiator to

the target connection. This technique can be useful if initiator and/or target storage stacks do not
natively support application layer multipathing. For example, Microsoft supports SCSI layer multi-
pathing (MPIO) only in the server version of Windows, while iSCSI MC/S is fully supported even for
desktops. The biggest downside of this technique is that only paths using the same capable transport
protocol (like iSCSI) may participate—you cannot back up Fibre Channel fabric with iSCSI this way.
Also, the requirement to provide semantics of a single SCSI initiator-target connection (request order-
ing, error recovery, etc.) significantly complicates the transport protocol implementation. For example,
if one of the connections experiences delays or packet losses, other connections have to delay their
otherwise already delivered requests while that connection recovers, or they must implement mecha-
nisms for quick problem detection with the affected requests being rerouted via different connections.
For these reasons, the new FreeBSD kernel space, the iSCSI initiator and target implementations do
not support MC/S. The old user space iSCSI target implementation, istgt, declared MC/S support, but
implemented it in a minimalistic way without proper error recovery, and that sometimes improved
storage performance, but could also cause suffering on the reliability side.

Peripheral device driver-layer multipathing allows the execution of upper-layer requests (such as
block read, write, delete, etc.) via multiple, transport-layer connections (such as iSCSI, Fibre Channel,
SAS, etc.). This technique permits simultaneous use of different transport protocols only limiting to a
single application protocol (such as SCSI Block Commands). You cannot backup an NVMe-over-Fabric
connection with iSCSI using multipathing at this layer unless you translate one command set (NVMe)
into another (SCSI). Multipathing at this layer assumes a completely different view of request execu-

A REVIEW OF

STORAGE
Multipathing

B Y A L E X A N D E R M O T I N

Storage multipathing is a technique designed to improve storage
reliability by eliminating a single point of failure, and/or improv-
ing its performance by distributing workload between multiple
physical connections. Multipathing can be implemented on sever-
al different layers: the transport layer (like iSCSI), the peripheral
device driver layer (like the SCSI block device driver), or the block
storage transformation layer (like FreeBSD GEOM). Each imple-
mentation has its own benefits and downsides.

Jan/Feb 2018 5

tion ordering. Since the target does not know which of the multiple initiators represent the same periph-
eral device driver (as the source of properly ordered requests), it can not guarantee ordering for requests
coming via different paths. This significantly simplifies multipathing-capable target implementation, but
requires a special compilation of request distribution logic between the paths in the peripheral driver,
which should prevent, or at least minimize, unwanted request reordering, probably at the cost of lower
path utilization. Fortunately, the peripheral driver knows more about the nature and origination of
requests, and can do it in a more clever way than is possible on transport layers.

For people familiar with network protocols, an analogy can be drawn: transport-layer multipathing is akin
to Multilink PPP, which guarantees full, original ordering of all packets as required by upper layers of the PPP
stack, and distributes packet fragments between the available links without looking inside; same-time,
peripheral device driver-layer multipathing can be compared to LACP, which identifies individual data streams,
looking at a packet's MAC and IP addresses, TCP/UDP ports, etc., to distribute them between the links in a
way that would guarantee ordering, only separately within each stream. While the first approach may theo-
retically provide much better throughput for a low number of data streams, the second provides a less com-
plicated stateless implementation, lower average latency, and better resiliency to individual link problems.

As an example of minimal, peripheral driver-layer multipathing implementation, we may look at SAS
HDDs. Each SAS HDD typically has two SAS ports, each of which can be connected to a separate SAS
expander of the backplane, and then to a separate HBA of the host, providing the host two separate SCSI
I_T_L (Initiator-Target-Logical Unit) nexuses. A multipathing-capable SCSI peripheral driver can identify
those two I_T_L nexuses as paths to the same Logical Unit by fetching and comparing the globally
unique Logical Unit Name (can be NAA or EUI IDs, text or binary strings, UUIDs, etc.). After that, the
peripheral driver can report a single block storage device to upper layers and choose a strategy to distrib-
ute workload between those two paths. Since, for a typical SAS HDD interface, throughput is much higher
than media throughput, and sequential access is much faster than random, simple failover configuration,
using only one of the paths at a time can be perfect. The same time for high-performance SSDs through-
put of a single SAS link may not be enough to saturate the backing storage, requiring both paths to be
utilized simultaneously to reach full performance.

If peripheral device-driver multipathing is not supported or cannot be used, this functionality can be
implemented on a higher, block-storage transformation layer, such as GEOM on FreeBSD or Device
Mapper on Linux. This layer operates in terms of abstract block read, write, delete, etc., requests, and is
not related to the specifics of any transport or application protocol. It may use some out-of-band informa-
tion from the lower layers or work independently. Better integration makes it possible to automate its
operation, and, thus, makes it more reliable, but it also makes the storage stack more complicated. The
FreeBSD GEOM MULTIPATH class, by default, operates without using any out-of-band information, relying
only on its own metadata, stored at the last sector of the device, and the configuration provided by
administrator. But it also has a mode of operation without using the on-disk metadata, relying on an
external government of some third-party code to manage path detection, activation, prioritization, failing,
etc., and by relying on the Logical Unit Names and other information.

Things become much more interesting when target ports are not equal. SCSI specifications call it
Asymmetric Logical Unit Access (ALUA). ALUA can be caused by different things, but typically it is caused
by the presence of several storage controllers within the target device that handle requests from different
target ports, and which, for some reason, cannot work simultaneously either at all, or for some Logical
Units. The degree of the asymmetricity may vary. In the worst case, some ports/controllers may be unable
to even report any identification information for the Logical Unit. ALUA calls this state «Unavailable».
This is not a very useful state, since it does not provide sufficient information even for automatically set-
ting up multipathing. The next, better state is called «Standby». In this state, the port is able to report
full identification of the Logical Unit, handle SCSI reservation and some management requests, but is
unable to access the media. This state allows automatic multipathing configuration, but also demands full
ALUA multipathing support from the initiator OS, since data access requests sent via the wrong path will
fail. The next state is called «Active/Non-optimized». This state allows full Logical Unit access via the

path, but the performance characteristics of such access may be more or less suboptimal, for example,
due to the need for additional synchronization or command/data transfer between the storage con-
trollers. This state allows the Logical Unit to be used, even with a peripheral driver without ALUA sup-
port, but such use may be inefficient if the wrong path is selected. And finally, the best state the port
may have is «Active/Optimized». This state means that the Logical Unit is fully accessible via this
port with maximal performance. An additional ALUA state is called «Transitioning» and covers situa-
tions when the port or the Logical Unit is changing its state and is temporarily not accessible. The duty of
the ALUA-capable initiator is to continuously monitor the state of each Logical Unit and choose the opti-
mal path through which to send requests. In some cases, the ALUA-capable initiator may explicitly or
inexplicitly request port state transitions, but the logic of those requests is outside the scope of SCSI spec-
ifications and is vendor-specific.

The multipathing operation with ALUA can be exemplified with the TrueNAS storage appliance from
iXsystems Inc., which uses the High-Availability functionality of the FreeBSD CTL subsystem to imple-
ment the ALUA-capable multipath SCSI target. The TrueNAS High-Availability appliance includes two
storage controllers, each running its own copy of FreeBSD 11, connected via either Ethernet or by a
PCIe Non-Transparent Bridge internal link, and having access to a shared array of SAS disks. The appli-
ance uses ZFS pools to store the user data, but since ZFS is not a clustered filesystem, only one of the
controllers can access a specific pool at any point in time. SCSI requests received via iSCSI or the Fibre
Channel links with the controller having no access to the required pool are proxied by CTL to the
other controller via the internal link. Providing multipathing functionality without ALUA in such a situa-
tion would cause either additional latency or severe bandwidth limitations, depending on the type of
internal link used. The use of ALUA allows a capable multipathing client to know the present situation
and always submit requests via the most efficient paths. Let's look at some practical examples:

A storage system with two controllers was configured to provide one iSCSI target Logical Unit in
ALUA mode. Multipath-related parts of the CTL daemon configuration on one of nodes look like this:

6 FreeBSD Journal

portal-group pg1A {
tag 0x0001
listen 10.20.20.234:3260
foreign

}
portal-group pg1B {

tag 0x8001
listen 10.20.20.235:3260

}

lun "aluademo" {
ctl-lun 0
serial "ac1f6b0c248600"
device-id "iSCSI Disk ac1f6b0c248600 "
option vendor "TrueNAS"
option product "iSCSI Disk"
option revision "0123"
option naa 0x6589cfc000000d7a21ae0e095faf3cea

}

target iqn.2005-08.com.ixsystems:aluademo {
alias "aluademo"
portal-group pg1A no-authentication
portal-group pg1B no-authentication

lun 0 "aluademo"
}

You may see two iSCSI portals configured with IPs of different controllers. Different portal group tags
mean those portal groups represent separate SCSI ports and cannot share MC/S session connections.
You may see a single SCSI target associated with those portal groups. And you may also see a single
Logical Unit associated with that target, including a set of different unique IDs required for multipath
operation.

Now we connect to this target using the FreeBSD iSCSI initiator:

Since the FreeBSD initiator does not support peripheral driver-level multipathing, the two paths to one
Logical Unit were detected as two separate block devices, da0 and da1. Looking now at the storage
side, we see lists of initiator and target ports inside CTL:

Here we see two groups of target ports, serviced by different storage controllers: ports 0-127 belong-
ing to controller «a», ports 128-255 belonging to controller «b». Controller «b» is the one with ZFS pool
access at this point. You see each controller with its own iSCSI target port with unique name. Each of the
iSCSI target ports has one connected initiator port, belonging to the same initiator system, but different
session IDs (not part of MC/S or a reconnection attempt).

This is where the multipath client operation starts. Using the sg_inq tool from the sg3_utils pack-
age, we fetch identification information for both block devices da0 and da1 reported by FreeBSD:

iscsictl -A -d 10.20.20.234
iscsictl -A -d 10.20.20.235
iscsictl
Target name Target portal State
iqn.2005-08.com.ixsystems:aluademo 10.20.20.234 Connected: da0
iqn.2005-08.com.ixsystems:aluademo 10.20.20.235 Connected: da1

ctladm portlist -i
Port Online Frontend Name pp vp
0 NO ha 1:camsim 0 0 naa.5000000341ab1b01

Target: naa.5000000341ab1b00
1 YES ha 1:ioctl 0 0
2 YES ha 1:tpc 0 0
3 YES ha 1:iscsi 1 1 iqn.2005-08.com.ixsystems:aluademo,t,0x0001

Target: iqn.2005-08.com.ixsystems:aluademo
Initiator 0: iqn.1994-09.org.freebsd:mini.ixsystems.com,i,0x8047c8217cb4

128 NO camsim camsim 0 0 naa.50000003530efb81
Target: naa.50000003530efb00

129 YES ioctl ioctl 0 0
130 YES tpc tpc 0 0
131 YES iscsi iscsi 32769 1 iqn.2005-08.com.ixsystems:aluademo,t,0x8001

Target: iqn.2005-08.com.ixsystems:aluademo
Initiator 0: iqn.1994-09.org.freebsd:mini.ixsystems.com,i,0x808be26435c8

sg_inq -p di da0
VPD INQUIRY: Device Identification page

Designation descriptor number 1, descriptor length: 59
designator_type: T10 vendor identification, code_set: ASCII
associated with the Addressed logical unit

vendor id: TrueNAS
vendor specific: iSCSI Disk ac1f6b0c248600

Designation descriptor number 2, descriptor length: 20
designator_type: NAA, code_set: Binary

l i s t c o n t i n u e s

8 FreeBSD Journal

associated with the Addressed logical unit
NAA 6, IEEE Company_id: 0x589cfc
Vendor Specific Identifier: 0xd7a
Vendor Specific Identifier Extension: 0x21ae0e095faf3cea
[0x6589cfc000000d7a21ae0e095faf3cea]

Designation descriptor number 3, descriptor length: 48
transport: Internet SCSI (iSCSI)
designator_type: SCSI name string, code_set: UTF-8
associated with the Target port

SCSI name string:
iqn.2005-08.com.ixsystems:aluademo,t,0x0001

Designation descriptor number 4, descriptor length: 8
transport: Internet SCSI (iSCSI)
designator_type: Relative target port, code_set: Binary
associated with the Target port

Relative target port: 0x3
Designation descriptor number 5, descriptor length: 8

transport: Internet SCSI (iSCSI)
designator_type: Target port group, code_set: Binary
associated with the Target port

Target port group: 0x2
Designation descriptor number 6, descriptor length: 40

transport: Internet SCSI (iSCSI)
designator_type: SCSI name string, code_set: UTF-8
associated with the Target device that contains addressed lu

SCSI name string:
iqn.2005-08.com.ixsystems:aluademo

sg_inq -p di da1
VPD INQUIRY: Device Identification page

Designation descriptor number 1, descriptor length: 59
designator_type: T10 vendor identification, code_set: ASCII
associated with the Addressed logical unit

vendor id: TrueNAS
vendor specific: iSCSI Disk ac1f6b0c248600

Designation descriptor number 2, descriptor length: 20
designator_type: NAA, code_set: Binary
associated with the Addressed logical unit

NAA 6, IEEE Company_id: 0x589cfc
Vendor Specific Identifier: 0xd7a
Vendor Specific Identifier Extension: 0x21ae0e095faf3cea
[0x6589cfc000000d7a21ae0e095faf3cea]

Designation descriptor number 3, descriptor length: 48
transport: Internet SCSI (iSCSI)
designator_type: SCSI name string, code_set: UTF-8
associated with the Target port

SCSI name string:
iqn.2005-08.com.ixsystems:aluademo,t,0x8001

Designation descriptor number 4, descriptor length: 8
transport: Internet SCSI (iSCSI)
designator_type: Relative target port, code_set: Binary
associated with the Target port

Relative target port: 0x83
Designation descriptor number 5, descriptor length: 8

transport: Internet SCSI (iSCSI)

c o n t i n u e d f r o m p a g e 7

Jan/Feb 2018 9

Comparing the outputs, we see that all reported descriptors associated with the addressed
Logical Unit are identical. It means those two devices, indeed, represent the same logical unit.
Descriptors associated with the target port are different and provide full information to identify
them within the target device. You’ll see the numbers there match the information reported by the
`ctladm portlist` command.

And now, ALUA appears. The primary SCSI command for fetching ports statuses is
REPORT TARGET PORT GROUPS::

Here we see that our target reports two port groups (one per storage controller) and 6 ports (3
per storage controller). Groups and ports identifications here match earlier outputs of the
`sg_inq` and `ctladm portlist` commands. In addition to information we already know,
this command tells us that each group supports a number of ALUA states, and also that port group
0x2 (controller «a») is now in «Active/Non-optimized» state (0x01), while port group 0x3
(controller «b») is in «Active/Optimized» state (0x00). It tells us that at this moment it is
preferable to send all requests via the block device da1, but if we lose connectity via that path, the
da0 device can also handle requests, just more slowly.

Unfortunately, the FreeBSD SCSI disk peripheral driver does not support multipathing for using
that information automatically. The multipathing setup on the GEOM layer has to be done either
manually by the administrator, or by some external scripts, as is done, for example, by FreeNAS soft-
ware for multipath SAS disks. Here we do it manually:

sg_rtpg da0
Report target port groups:

target port group id : 0x2 , Pref=0, Rtpg_fmt=0
target port group asymmetric access state : 0x01
T_SUP : 1, O_SUP : 0, LBD_SUP : 0, U_SUP : 1, S_SUP : 1, AN_SUP : 1, AO_SUP : 1
status code : 0x02
vendor unique status : 0x00
target port count : 03
Relative target port ids:

0x01
0x02
0x03

target port group id : 0x3 , Pref=0, Rtpg_fmt=0
target port group asymmetric access state : 0x00
T_SUP : 1, O_SUP : 0, LBD_SUP : 0, U_SUP : 1, S_SUP : 1, AN_SUP : 1, AO_SUP : 1
status code : 0x02
vendor unique status : 0x00
target port count : 03
Relative target port ids:

0x81
0x82
0x83

designator_type: Target port group, code_set: Binary
associated with the Target port

Target port group: 0x3
Designation descriptor number 6, descriptor length: 40

transport: Internet SCSI (iSCSI)
designator_type: SCSI name string, code_set: UTF-8
associated with the Target device that contains addressed lu

SCSI name string:
iqn.2005-08.com.ixsystems:aluademo

c o n t i n u e d f r o m p a g e 8

s e e n e x t p a g e

10 FreeBSD Journal

We see that both da0 and da1 devices do now belong as paths to the multipath/mp0 device, and
the da1 device will handle the I/O until either some error occurs or the administrator commands other-
wise. Some other initiators may do it completely automatically. For example, VMware vSphere automat-
ically detects multipath devices and configures their operation using ALUA.

Here the initiator correctly identified that two paths belong to the same target, and send I/Os via the
proper controller «b». If there is more than one path via that controller, it would be possible to use
either the Most Recently Used (default) or the Round Robin path selection policy. In the case of the
Round Robin policy, vSphere switches the active path after a certain amount of requests (1,000 by
default). The fairly high default value does not allow complete throughput utilization of all paths with
only one server, but, as described above, it maintains the original request ordering.

Out of the box, Windows Server only supports MC/S transport-layer multipathing. The upper-layer
multipathing has to be installed as a separate, optional feature. But after the component installation
and couple system reboot, if your system is still alive ;), the ALUA multipath target should be properly
detected and work:

To summarize: used as a target, FreeBSD CAM Target Layer (CTL)
can provide decent SCSI multipathing functionality, supporting
ALUA and High-Availability clustering, and compatible with many
third-party intiators. Transport layer multipathing in the case of iSCSI
MC/S is not supported due to high complexity and limited scope,
but it could possibly be useful in environments with many Windows
desktops. Being used as the initiator, FreeBSD, at the moment, can
propose only basic GEOM layer multipathing without ALUA support.
To some degree, this can be compensated for by external scripting,
but it is prudent to implement full SCSI layer multipathing with
ALUA support right out of the box.

ALEXANDER MOTIN is Team Lead of the OS/Services
team at iXsystems Inc., and has been a FreeBSD source
committer since 2007.

kldload geom_multipath
gmultipath label mp0 da0 da1
gmultipath prefer mp0 da1
gmultipath status

Name Status Components
multipath/mp0 OPTIMAL da0 (PASSIVE)

da1 (ACTIVE)

